
Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Introduction

June 22, 2007

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

6/22/07 Page 2

Purpose of Course
Early developer-level introduction to facilitate cooperative
development
– Trying to evolve project toward an Open Source core
– Everything a part of the baseline and open to improvement

Early focus on architecture and design patterns
– Get the big picture right, before moving into specific capabilities
– Widen exposure to get more creative input

Provide workstations with full installation of ADE 1.0
– Source with Eclipse IDE
– Server Side Run environment
– CAVE visualization
– Javadocs and other documentation

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 Introduction

6/22/07 Page 3

Training Prerequisites
Reading Materials
– Software Product Improvement Plan

Software
– Pure Java

http://java.sun.com/docs/books/tutorial
– CAVE: ECLIPSE IDE Framework & Plug-Ins

http://www.eclipse.org
Eclipse RCP

– EDEX: Introductory level of Spring and Mule ESB
http://mule.codehaus.org

– All: Introductory level of ANT
– All: Introductory level of XML

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 Introduction

6/22/07 Page 4

Course Objectives
Module 1: Architecture

Understand the overall System Architecture

Module 2: Installation, Build, and Regression Test
Successfully install ADE
Have ADE ready for running and development
Successfully do a “Clean Build and Deploy”
Successfully verify system installation by running a standard
regression test through a regression test GUI (e.g., Tomcat)
Learn how to use “Debug” to step through code running in
services

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 Introduction

6/22/07 Page 5

Course Objectives (cont’d)
Module 3: MicroEngine Scripting

Understand how to create tasks and scripts for the
MicroEngine (uEngine)

Module 4: Data Type Plug-In
Learn why the Plug-In Pattern was chosen
Understand the architectural pattern of a Data Type Plug-In
Write a new Plug-In for a new data type
Put a MicroEngine task into a Data Type Plug-In

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 Introduction

6/22/07 Page 6

Course Objectives (cont’d)
Module 5: Service Oriented Architecture (SOA)

Understand the architectural pattern of an SOA service
Understand how services are written
Understand how services are integrated into the system
Understand how to monitor and test an SOA service

Module 6: CAVE-Underlying Framework and Rendering
General introduction to CAVE
Understand how CAVE renders geospatial, vector, and x-y
data

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 Introduction

6/22/07 Page 7

Course Objectives (cont’d)
Module 7: CAVE-User Interface

CAVE baseline orientation
Add functionality by modifying plugin.xml
Add a new menu item and custom resource

Module 8: CAVE Visualization Plug-Ins
Understand the mechanisms to extend CAVE
Write a new Plug-in to extend CAVE functionality

Module 9: Installation/Deployment
Install the EDEX services and CAVE application to a
supported platform

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 Introduction

6/22/07 Page 8

Course Objectives (cont’d)
Module 10: CAVE Menu Creation

Describe the changes to Menu Architecture in TO6
Provide an example of creating a new menu in CAVE

Module 11: Localization
Introduce the Localization concepts in ADE 1.0
Describe the new Localization process

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.00 Introduction

6/22/07 Page 9

BREAK

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 1: Architecture

June 22, 2007

6/22/07 Page 11

Introduction
Early Decisions and Concerns That Drove Architecture
– How to deal with changing ConOps
– How to add new data types quickly
– Adding new science
– Scale to increasing data rates
– Lower sustainment costs

Some Core Principles
– Minimize coupling
– Increase cohesion
– Minimize size of code base
– Maximize simplicity
– Pull style data flow

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 12

Architecture History Leading to SOA
Evolved out of the message-based approaches rrom 20 or 30 years ago
for high-performance systems
In the 1990s: Systems built on message busses Like DecMessageQ,
Tibco, MQseries
Evolved Into J2EE and JMS (Java Messaging System) – currently used
by many systems
Service Oriented Architecture: Somewhat of a rebellion against the
unnecessary complexity of J2EE for some domains
Decision to take the next step by decoupling the the physical service from
the communication mechanisms through the use of Enterprise Service
Bus (ESB)

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 13

Core Decisions –
Use ESB and Container-Based Processing

Enterprise Service Bus (ESB) with Execution Container
– Startup, shutdown, communication, multi-threading

MULE + SPRING Execution Container
– Dependency injection (minimizes coupling)
– Example: Look at PersistSrv.java

Outbound Endpoint Hit on
return statement in

service

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 14

Core Decisions (cont’d)
JAVA as Primary Programming Language
– Makes plug-ins possible, interfaces, classloading
– Traction in commercial and open source programming
– Performance comparable to other approaches
– Programmer productivity improvement

XML as Primary Text Format for messages and configuration
– Self-describing, platform independent, standard parsers

Plug-In: The mechanism for extending the system
– Can be Hot deployable, or system cycled to pick up new plug-ins

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 15

System Concept: AWIPS Architecture
Environmental Intelligence Framework

Requirements Vision drives Architecture
– Focus on “ilities” drives new AWIPS Architecture
– Features and capabilities get generalized into reusable patterns
– Customer TIMs give priority to capabilities

Architecture Framework Vision
– Create a new, low-cost framework for hosting a full range of

environmental services, including thick client visualization
– Scale down Framework to a small laptop and up to clusters of

enterprise servers without software change
– Base Framework on highly reusable design patterns that

Maximize reuse
Have datatype independence and fast adaptability

– Open source leveraged to maximize reuse

Intro

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 16

AWIPS Architecture Definitions

Term Definition
ADE AWIPS Development Environment; source code to Execution

Framework Enterprise Development Kit, including tools
SOA, End Points, I/O
Routing, Transforms

Service Oriented Architecture where system capability is
available at stateless endpoints

Canonical XML Well-formed XML that follows high-level rules
Patterns Implements a design solution that solves a problem that occurs

many times
Technical Reference
Architecture

A physical Software Execution Framework

JMS, JMX Java Messaging System (API), Java Management Extensions

CAVE Common AWIPS Visualization Environment
SEDA Serial Event Driven Architecture

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 17

AWIPS Architecture Concept –
Architecture Framework Implementation

Framework Implementation: Integrated several “best of breed” Open
Source projects with a set of advanced enterprise patterns to create a
highly extendable framework
– Patterns implemented in pure Java (reuse example: ProductSrv and AutoBldSrv

use uEngine pattern)
– Open Source primary source of reuse

15 major Open Source projects integrated
Version controlled with CM baseline, libraries part of run environment
Leverages Internet community for core infrastructure
Standards compliant, rapid evolution
Free, large body of public expertise
Open Source libraries controlled by putting them in the CM Compile Library and
deploying them to the runtime environment

– Packaged together in the ADE, which contains everything from the Source
Code repository to the execution environment, including operator Clients

Concept

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 18

AWIPS ADE Open Source Projects –
Integrated Open Source Projects

ANT Build scripting ADE build system
Mule + Spring Enterprise Service Bus + Container ADE Run Environment
ActiveMQ Java Messaging System Broker ADE JMS Broker
Jibx XML to Object Serialization ADE Canonical XML Message
GeoTools + JTS GIS capabilities ADE GIS primitives
Tomcat Web Server ADE Test Client Server
Jython Python Scripting Engine ADE uEngine Python Script Engine
Baltik Scalable Vector Graphics Tools ADE SVG tools
Rhino Java implementation of Javascript ADE uEngine Script Languages
Ehcache Event Driven Clusterable Cache ADE Cache Framework
Log4j Java Logging API ADE Log manager
Jogl Java API to OpenGL ADE CAVE rendering interface
Eclipse RCP GUI plug-in based framework ADE CAVE framework
Eclipse IDE Java Integrated Development ADE development environment
MC4J Console JMX Management Console ADE remote management console

Concept

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 19

SOA Framework Concept
Extensible Architecture – Minimal Coupling

+Ingest Data
+Index Data +Store Data
+Adapt +Auto Build

+Request

+Subscribe +Collaborate

<Technical Reference Architecture>
Services

<Technical Reference Architecture>
SOA System Services (EDEX) Data Types

Transforms
Scripts

+domain libraries

+mapping libraries

Core Base of Services
MicroEngine
Plug-In Framework
Extensible XML model
Core SOA Services

Extend to a Specific Domain
Plug-in specific libraries
Plug-in data types, transforms

<Visualization Framework>
CAVE

Vis Plugin 1
Vis Plugin 2
Vis Plugin n

Service Interface To Data
Clean separation between data and
visualization
Canonical XML data model
Scriptable Interface

Satellite Feed 4.5Mps

Local Data

Meta
Data

Data

2D/3D GIS
Raster Render
Vector Render

Drawing
Collaboration
XY Render

T06
New
T06
New

Features

Auto Animate Localization

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 20

Architecture Features –
Execution Container & Data

Enterprise Service Bus (ESB)
– Combined approach to integration: provides plumbing for highly

distributed, loosely coupled services
– Dependency Injection Container: Minimizes service and component

coupling, makes for more flexible services
– Messaging, Web Services, Data Transformation, Routing
– Process flow and service invocation can span entire bus
– Provides clear separation between business and control logic

Data Persistence
– Use of a simple retrieval-oriented metadata model that is keyed to high-

performance HDF5 file persistence
– Considered a fully normalized RDBMS model but the value added for

transient weather data is limited and the complexity not considered
worth it

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 21

Architecture Features – Geo Spatial
Spatial-Enabled PostgreSQL and GeoTools with JTS

Geo Spatial Enabling Data
– Chosen approach: Create static spatial tables in PostgreSQL

PostGIS extension: Free, simple, high performance
– Visualization: Use ESRI Shape Files as standard vector format

Enables GIS analysis of data, also renders SVG using “batik”
Renders GeoTiff using Tiff tags

– Input / Output
All ingested data spatially indexed and can be spatially queried
Can create Shape and GeoTiff output

radar_spatial

spatial_grids

spatial_obs_stations

spatial_satellite

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 22

Architecture Features – Visualization
Approach
– Develop a Common AWIPS Visualization Environment (CAVE)

Supports the fixed scales and detailed interactions of D2D
Supports large data sets and analysis capability of N-AWIPS
Supports GIS visualization and analysis natively
Supports collaboration and remote Client operations

– Build on the Eclipse Rich Client Platform: Full-featured framework with
an extensive widget set, extendable through plug-ins, high
performance, Open Source

– CAVE: A set of Eclipse Plug-ins installed in the Eclipse RCP
– Extensive support community, large public repository of plug-ins,

several graphics-intense applications being developed in it

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 23

ADE CAVE Visualization – Service Endpoint
Enables Gaming Style Data Interactions

T05 Radar Rendering Uses
Dynamic raster tiling

T05 Radar Rendering Uses
Dynamic raster tiling

GPU Shader Language Rendering
Controls (Color, …), Animation
GPU Shader Language Rendering
Controls (Color, …), Animation

New Quad tiling of large raster
Sets leverages HDF5 chunking
New Quad tiling of large raster
Sets leverages HDF5 chunking

Bundles with Save / Retrieve Define
Layers, Map Projection, Zoom
Bundles with Save / Retrieve Define
Layers, Map Projection, Zoom

Active Raster Data
Interrogation
Active Raster Data
Interrogation

Dynamic map reprojection using
GeoTools Transforms& GPU Warping
Dynamic map reprojection using
GeoTools Transforms& GPU Warping

Eclipse RCP 3.2 – Plug In Extendable
Plug In for Warn Generation Added

Eclipse RCP 3.2 – Plug In Extendable
Plug In for Warn Generation Added

All Tilts Keyboard ControlsAll Tilts Keyboard Controls

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 24

Architecture Features –
Languages, Interprocess Communication

Java the Primary Programming Language
– Extensive Open Source support, high programmer productivity, high reuse,

performance parity with traditional languages, university teaching language
– Enables platform independence
Rhino (JavaScript) for scripting
– Extensible with Java classes, large base of customer scripts and expertise,

clean OO approach to scripting
JMS primary for interprocess communication
– Enables SEDA processing, increases reliability through queue persistence,

enables subscription / notification through topics
– Enables asynchronous communication for performance
HTTP, FTP, JMS, E-Mail for WAN Communication
– Firewall compatibility, enables CAVE to act like a thin client, can transparently

switch between JMS and HTTP without application changes

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 25

Conceptual Architecture:
Logical Layered Viewpoint

Client/Presentation Services

Platform Layer

Mission Services
Layer

Data Access Layer

Metadata
Index

Data Persistence
Store

En
te

rp
ris

e S
er

vic
e B

us
 -

Co
m

m
un

ica
tio

n

Se
cu

rit
y S

er
vic

es
/D

em
ilit

ar
ize

d
Zo

ne
 (D

MZ
)

Spatial
Index

Hydro Models

LAPS

FORTRAN/C/C++
Command Line

Programs

External Programs

JMX

<<Java>>
DataLayer

PostgreSQL
HDF5

<<abstract>>
BaseDao

Hibernate

<<Java>>
HDF5DataStore

HDF5 API

IngestSrv

PersistSrv

IndexSrv

ProductSrv

AdapterSrv

NotifySrv

SubscribeSrv

AutoBldSrv

PurgeSrv

Mbean

T06
New
T06
New

CAVE

StagingSrv

UtilitySrv

Localization
Store

Localization
Store

Features

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 26

AWIPS-II ADE High Level System Services
SOA Services Running in an ESB Container

IngestSrv
StagingSrv

PersistSrv
PurgeSrv IndexSrv ProductSrv

NotifySrv AutoBldSrv Collaboration

CAVE
Visualization

Client

Mbean Mbean Mbean Mbean

Mbean Mbean

TAF Plug In
METAR Plug In
Radar Plug In
Satellite Plug In
Radar Plug In

FileSystem
RDBMS via JDBC

Meta Data Index
Spatial Data Base

uEngine
Manage Subscription

Subscription Notify

Data Rendering
CAVE Bundles

CAVE Procedures
Wx Drawing
Wx Warning

Data Interrogation

Enterprise Service Bus – HTTP, JMS, Virtual Memory, File Endpoints

AdapterSrv
Mbean

Exec Adapter
JNI Adapter

Radar All Tilts

ADE 1.0

uEngine

Services Independent of End Points

HDF5 persistence

XMPP

Updated T06

Hydro Visualization

WAN Visible

GRIB Plug In

UtilitySrv

Mbean

Localization Data

Features

JMX Remote
Service Management

Client

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 27

Service Descriptions
Service Description

IngestSrv Listens on an endpoint for new data and transforms the data into a
message

PersistSrv Writes ingested data to a persistent store file system or RDBMS
PurgeSrv Runs periodically to maintain the metadata and the persistent stores
IndexSrv Indexes the metadata extracted from the ingested data into a store that

facilities data searches and retrievals
ProductSrv Listens on an endpoint for external product requests and fulfills requests

with a response message. Typically receives “Action” scripts that describe
how to transform raw data into a visualization product

NotifySrv Broadcasts a product from a subscription fulfillment. Also sends out alerts
based on ingested data

AutoBldSrv Receives requests to build products that are under subscription. Triggered
by data arrival and/or time

ColaborateSrv Provides common point for serving out products shared by several clients
AdapterSrv Enables legacy command-line programs to be run as a standard service

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 28

ADE Implemented Design Patterns
Patterns Enable AWIPS “ilities”

CM/Build/Deploy Pattern Use open source tools to standardize build and enforce standards for
components

SOA Service Pattern Simplifies Service interactions with application containers
Canonical XML Service
Interface

Standardizes the request / response interface to SOA services

Component Model Standard pattern for injecting new components

uEngine Task Execution Pattern Enables system flexibility through re-use of small units of execution

Geo Spatial Pattern Enables building, displaying, analysis, and querying for data

Datatype Plug-in Pattern Enables system adaptability to new data and transforms
Legacy Adapter Pattern Enables system evolution by allowing legacy processes to run in an SOA

Data Notification / Subscription Enables data driven processing and display
Common AWIPS Visualization
Environment (CAVE)

Consolidates disparate display mechanisms into one platform independent
whole

Focus on Patterns That Maximize Reuse Across System Functions

Patterns

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 29

Software CM/Build/Deploy Pattern
Design Pattern

Build Vision: Create a simple layered build system that manages
component coupling and supports partial deployment
Build Implementation: Implemented in ANT as a series of macros
and ANT extensions

build.xml

config.xml

compile.xml

generate.xml

mortar.xml

taskdef.xml

build-global.properties

build-local.properties

Jar Files for Compiling
Open Source Jars

javadoc.xml

jibx.xml

test.xml

deploy.xml

Build
Patterns

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 30

Geo Spatial Pattern
Basic GIS Ingest, Indexing, Output, and Analysis

Geo Spatial Vision: All ingested data indexed by spatial
index making Spatial Query and Analysis available to the
Visualization Operator or SOA service

Geo Spatial Index
R-Tree Indexed Shape File

SpatialQuery

radar_spatial

spatial_grids

spatial_obs_stations

spatial_satellite

DataLayer
+obsSpatialQuery(…)

PostgreSQL Spatial Tables

Spatial
Pattern

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 31

Geo Spatial Pattern
Coordinate Reference System (CRS)

Spatial Descriptor: Completely defines a grid area
– GeneralEnvelope: Geo Tools Concept
– GridGeometry2D: Geo Tools
– Coordinate Reference System

Coordinate Reference System (CRS) and
Grid definition

from a bundle.xml file in CAVE

Spatial
Pattern

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 32

BREAK

6/22/07 Page 33

AWIPS Data Models
Data Model Description

Service Interfaces
Data Model

Canonical XML model, message format for external interfaces to
SOA services

Meta Data Model Key fields and their definitions for ingested transient data
Data Object Model Java OO model for internal data representations

Data in Object Model also has XML representation through JIBX
Data Persistence
Model

For transient data storage

Static Data Model For data that seldom changes
Data in Object Model also has XML representation through JIBX
Map Scale Areas
Station Data
Map overlays (ERSI shape files stored on disk)

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 34

Data Model Introduction
Canonical XML SOA Interfaces Excluded

Data Access Layer implementation using Hibernate
Data Access Object (DAO) concept leverages Hibernate
Data Persistence through HDF5. Why?
– High-performance gaming-level interactions supported
– Chunking of data records supports visualization tiling
– Flexible retrieval supports 4D rendering
– Streaming compression
Meta data implemented in PostgreSQL through Inheritance
– Defined only in plug-ins, drives Data URI
Base Object Model extended in plug-ins
Data URI concept ties everything together
Purging concept of circularly repository structures

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 35

Conceptual Data Model Design
I/O Formats Follows Existing Standards

Input Formats
• grib1/2
• GINI
• ASCII (WMO, shef, …)
• Radar Level II

CAVE

Output Formats
• Vector: ERSI shape file, SVG, Redbook
• Raster: GeoTIFF,png,jpg
• Text: Canonical XML, WMO Bulletins…
• VTEC warnings

Ingested
Persistence
Repository

• Flat Files
• HDF5

Decoded
Persistence
Repository

• Flat Files
• HDF5
• RDBMS

Metadata
Index

• RDBMS

Raw Storage Model
• Transmission Formats
• HDF5 model

Decoded Storage Model
• RDBMS Schema
• HDF5 model
• Static data model

MetaData Model
• RDBMS Schema

Data Flow

Internal Object Model

Data
Model

Request Formats
• Canonical XML

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 36

action

+actionTask…

AWIPS Canonical XML –
Top Level Structure (End Point Independent)

header

+id
+time
+function [execute,
subscribe,
validate]

body

+action script
+response
+…

body

+action script
+response
+…

action

+actionTask…

response

+URI
+ASCII
+InLine
+Error

XML document that is the
Payload Message of the
ESB endpoint[file, JMS, http,
E-mail, VM, …]

Well-formed XML that can be
Parsed by DOM, SAX, common-
Digester, …: Dynamically extendable

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 37

Data Access Layer API
Hibernate Leading Object To Relational Approach

Solves fundamental problem of impedance mismatch
Maps between Object Model and Relational Data Model
Provides object-based query facilities
Improves performance over JDBC; designed for clustering
Reduces code count; improves productivity
Built-in support in SPRING

Internal Object Model

Hibernate Enables Meta Data Performance and Adaptability

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 38

Plug-In Enables Adapting To New Data Types

Hibernate XML Object/ Relational Mapping
Defined in SOA Plug In: Enables Adaptability

Satellite Plug In
satellite.hbm.xml

SatelliteRecord.java

<<Java>>
SatelliteRecord

-product_type
-datatype
* * *

<<abstract>>
AbstractBlobDataRecord

Data Object Model

mapping

Data Object Model
Extended By Plug In
Follows Base Model

Data Object Model
Extended By Plug In
Follows Base Model

Plug-In Defined Object to
Relational Mapping by

Hibernate XML

Plug-In Defined Object to
Relational Mapping by

Hibernate XML

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 39

ADE Data Access Pattern
Layered API Leveraging Spring’s Hibernate Support

SPRING Dependency
Injection Container

SPRING’s
Hibernate
Support

SessionFactory

Mule ESBDALconfig.xml
• dataSource
• hibernateProps
• sessionFactory
• DAOs

<<abstract>>
HibernateDaoSupport

+getHibernateTemplate()
+getSession()
+getSessionFactory()

<<abstract>>
BaseDao

+persistMetadata()
+findMetadata()
+findPluginVersion(plugin)
+executeQuery(query)
+executeUpdate(query)
+generateTable(tableName)

<<Java>>
TextDao

+

<<Java>>
BlobDao

+

<<Java>>
DirectQueryDao

+

<<Java>>
DataLayer

+saveMetadata()
+findMetadata()
+findPluginVersion(plugin)
+executeQuery(query)
+executeUpdate(query)

plugins/**/*.jar
*.hbm.xml

C3P0 JDBC
Connection
Pooling

Enables Thread Safe
Access

mappingJarLocations

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 40

SOA Plug-In Defines a Meta Data Table Set
Each Plug-In Also Defines a HDF5 set

[name1] Plug In

[nameN] Plug In

<<table>>
name1

<<table>>
Name1_1…n

<<table>>
nameN

<<table>>
NameN_1…n

<<table>>
PluginVersion

name1

nameN

HDF5 RepositoryRDBM Meta DataRDBM Meta Data

Data URI Creates HDF5 Record Structure

Circular SeriesCircular Series

Dynamic Meta Data
Schema Follows Rules

Dynamic Meta Data
Schema Follows Rules

Data
Model

Circular SeriesCircular Series

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

Flexible Data Model is Plug-In Extendable To New Data Types

6/22/07 Page 41

Plug-In Creates New MetaData in RDBMS
Uses PostgreSQL Table Inheritance and Rules

<<Java>>
TableDDLGenerator

+setTableDefinition()
+generateDDL()
+createPartitionTables()
+createRules()
+getPurgeDDL()

*.db.xml

<<table>>
satellite

-product_type
-datatype
* * *

Insert Rule
Chooses Sub Table
As Function of Time

<<table>>
PluginVersion

Name
tableName
Version
hibClass

Plug-In Auto generates Meta Data
Schema At Plug In Load

Time

Auto generates Meta Data
Schema At Plug In Load

Time

Sub
Tables

Circular Series of Sub
Tables Enables A Self
Maintaining Schema

Circular Series of Sub
Tables Enables A Self
Maintaining Schema

<<table>>
satellite_1 … N

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 42

Meta Data Demo
Using CAVE’s Volume Browser

<<table>>
satellite

<<table>>
satellite1_1…n

MetaData StoreMetaData Store

<<Java>>
DataLayer

SOA Service
ProductSrv

Hibernate

Canonical XML Message
Query Meta Data For Catalog

Canonical XML Message
Query Meta Data For Catalog

Dynamically populates Select Boxes through Catalog Queries Dynamically populates Select Boxes through Catalog Queries

uEngine

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 43

General DataURI Concept –
Key for System Adaptability to New Data Types

DataURI is a reference to data in the data store (i.e., D2D Data KEY)

Enables Automatic Subscriptions For all Ingested Data

Automatically ties data persistence to meta data

Enables Plug In Extendibility to new data types with changing any base
code

ADE implemented a design for automatic generation of DataURIs

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 44

IngestSrv

Meta Data Model Drives DataURI
Auto-Generated DataURI Couples HDF5 to Meta Data

<<Java>>
Plugin

+getDataURI()
+getMatchURI()

Satellite Plug In
satellite.db.xml

SatelliteWriter.java

XML Meta Data
Definition File

Tag Specifies If
Element is Part of

Data URI

XML Meta Data
Definition File

Tag Specifies If
Element is Part of

Data URI

Example Data URI
From a LOG File

Example Data URI
From a LOG File

<<Java>>
SatelliteWriter

PersistSrv

Auto-generates Data URI
references from
XML Definition

And Meta Decode of Ingested
Record

Auto-generates Data URI
references from
XML Definition

And Meta Decode of Ingested
Record

<<table>>
satellite

HDF5 RepositoryHDF5 RepositoryRDBM Meta DataRDBM Meta Data

Data
Model

Plug-In Enables Adapting To New Data Types
AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 45

Data Persistence Using HDF5
HDF5 Files In Time-Ordered Bins Like Meta Data

/awips/opt/data/hdf5Circular Time Bins

i.e., Auto-generated dataURI ties Meta Data to HDF5 Record

Plug-In 1 Plug-In 2 Plug-In 3

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 46

<<Java>>
StorageProperties

ADE Data Persistence Using HDF5
Application Code Interfaces Through API

<<Java>>
HDF5DataStore

+addDataRecord()
+store()
+retrieve()
-writeHDF(group, record)
-createGroup()
-un|lockFile()

<<Java>>
DataStoreFactory

+getDataStore(file)

<<interface>>
IDataStore

+addDataRecord()
+store()
+retrieve()

<<interface>>
IDataRecord

+get|setDimension()
+get|setName()
+get|setSizes()
+getDataObject()

<<abstract>>
AbstractDataRecord

+get|setDimension()
+get|setName()
+get|setSizes()
+getDataObject()

<<Java>>
ByteDataRecord

+get|setByteRecord()

<<Java>>
FloatDataRecord

+get|setFloatRecord()

<<Java>>
IntegerDataRecord

+get|setIntegerRecord()

<<Java>>
ShortDataRecord

+get|setShortRecord()

<<Java>>
SatelliteWriter

+write(record)
{ dataStore =

(HDF5DataStore)

DataStoreFactory}

jhdf5.jar

Data
Model

Plug-In Code
Using HDF5 api

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 47

uEngine Using the Data Access Layer
Single API Enables uEngine to Access All Data

<<Task>>
SpatialQuery

+execute()

<<Task>>
TermQueryIndex

+execute()

<<Java>>
DataLayer

+saveMetadata()
+findMetadata()
+findPluginVersion(plugin)
+executeQuery(query)
+executeUpdate(query)

uEngineuEngine

Results =
dataLayer.findMetaData
(plugin,
fields[],
operands[],
values[],
sort, count)

createMetaDataMap()

HDF5 RepositoryHDF5 Repository

Dynamically
Creates URI Reference to

Data Record

Dynamically
Creates URI Reference to

Data Record

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 48

Purging Data: Self-Maintaining
Drops Meta Data Tables & HDF5 Bins Periodically

PurgeSrv

<<Java>>
PurgeRoutine

+deleteData()
+deleteMetaData()

SPRING QUARTZ TIMER
Activated Service

<<table>>
name

-product_type
-datatype
* * *

<<table>>
name_1 … N

Sub
Tables

name1

nameN

HDF5 Repository
Circular Bin SeriesCircular Bin Series

Meta Data RDBMS

Data
Model

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 49

System Flow Diagrams

System Level Diagrams

Ingest
Flow

Application
Migration

Subscribe
Flow

Notify
Flow

Warning
Flow

NDFD
Flow

Service
Flow

RFC
Product

Flow

Forecaster
Product

Flow

ADE 1.0
Product
Request

Flow

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 50

Ingest Flow
Ingest at a Clustered End Point Service

Flow

StagingSrv

MetaData IndexPersistence
Repository HDF5

Platform/Infrastructure Resources Layer

Native Services Layer
SOA ESB Services

Data Access Objects

Platform/Infrastructure
Resources Layer

/awips/opt/data/sbn/…
/awips/opt/data/processing

JMS Broker

JMS://cp/…File Name

IngestSrv PersistSrv IndexSrv

vm://*IndexVMQueue
vm://persistVMQueue

Queue Clustering

Plug-in(plug-inType)
+ .getSeparator()

File End Point

Platform/Infrastructure Services Layer

DataLayer
+saveData(record)
+saveMetadata(record)

Enterprise Service Bus –HTTP,JMS, VM,…
Endpoints

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 51

Client/Presentation Layer

Product Request Flow
Cave Requests Data for Display as a GIS Layer

ProductSrv

termQuery

uEngine Pattern

MetaData IndexPersistance
Respository HDF5

fileInmakeResponse

Enterprise Service Bus –HTTP,JMS, VM,…
Endpoints

Input Message
Canonical XML

With body containing
action commands

Input Message
Canonical XML

With body containing
action commands

Output Message
Canonical XML

Response to Client
Containing URI references
to data generated

Output Message
Canonical XML

Response to Client
Containing URI references
to data generated

Platform/Infrastructure Resources Layer

Native Services Layer

Data Access Objects

CAVE SEDA Service Scaling SEDA Service Scaling

Service
Flow

Platform/Infrastructure Services Layer

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 52

Notification Flow –
Ingest Flow Triggering Notification

IngestSrv PersistSrv IndexSrv NotifySrv AutoBldSrv JMS Topic

store

product

DataNotify
checkSubscription

runAction
actionResponse

SBN
GOES East IR

CAVE

Eclipse
Job

Service
Flow

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 53

Subscription Flow –
CAVE Requests a Subscription

ProductSrv

Subscription

SubscriptionSrv

subscribe

makeDataURI

CAVE

createSubscriptionResponse

addScript(scriptID, script)

A

A

cacheManager

put(new Element(dataURI, subscription)

Auto generate
dataURI

from
Metadata

Cache Subscription
(Cache can be

persisted)

Service
Flow

AWP.TRG.SWCTR/TO6.ADE/CAVE.01 Module 1: Architecture

6/22/07 Page 54

BREAK

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 2: Installation, Build, and Regression Test
(Multiplatform)

June 22, 2007

6/22/07 Page 56

Objectives
Successfully install ADE
Have ADE ready for running and development
Successfully Do a Clean Build and Deploy
Successfully Verify System Installation by Running a
Standard Regression Test Through a Regression Test GUI
(e.g., Tomcat)
Learn How to Use Debug to Step Through Code Running in
Services

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 57

Build Products

AWIPS Development Environment (ADE) –
An End-to-End Technical Reference Architecture

ADE
Build Process

CM Source Repository Eclipse IDE for Java Deployment

Workstation

CAVE

Server/ Workstation

IngestSrv
PersistSrv

AdapterSrv
NotifySrv
SubscribeSrv

AutoBldSrv
IndexSrv

Service Container

Persistent
Store Metadata

Index Spatial
Index

File System Endpoints Regression
Tests

Data Sets

Documentation
• JavaDoc
• Design Docs
• How-to …

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 58

ADE Delivery – One DVD Posted to Site
CAVE Install

• Source as Eclipse project
• Maps and sample data

Documentation
• Software Test Plan
• Requirements Traceability Matrix
• uEngine scripts

Dependencies
• ANT
• JAVA + JAI
• Eclipse IDE

ADE Install Procedure
• Linux
• Windows

Server Side Install (EDEX)
• Execution environment
• Self-extracting deployment
• Regression test data
• Source as Eclipse project

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 59

ADE Install Procedure

ADE installation instructions are documented in Module 9:
Installation/Deployment.

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 60

Start-Up Server Side
RHEL Linux
– Start ActiveMQ: awips/activemq/bin/activemq-standalone.sh
– Start Mule: awips/opt/esb/bin/start.sh standalone
– Start Tomcat: awips/tomcat/bin/startup.sh

Windows
– Start the VMWare image
– Start ActiveMQ: awips/activemq/bin/activemq-standalone.sh
– Start Mule: awips/opt/esb/bin/start.sh standalone
– Start Tomcat: awips/tomcat/bin/startup.sh

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 61

ADE Regression Tests – Start Tomcat

Select a Data Type
Performs a catalog
query

Select a Data Type
Performs a catalog
query

View JavaScript
Messages
• Editing the request

View JavaScript
Messages
• Editing the request

Ingest Regression
Test Data
• Performs the copy to

ESB endpoint

Ingest Regression
Test Data
• Performs the copy to

ESB endpoint

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 62

ESB / Container Log File for Ingest

Radar Ingest Service
• Note 3rd instance
Radar Ingest Service
• Note 3rd instance

Catalog Query
• To ProductSrv
• Canonical XML msg

Catalog Query
• To ProductSrv
• Canonical XML msg

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 63

Remote Debugging of ESB SOA Services
Example Stepping Through “ProductSrv”

• Enable debug in awips/mule/conf/wrapper.conf

Right click to set breakpoint
at beginning of +process()
method

Right click to set breakpoint
at beginning of +process()
method

View data as it changesView data as it changes

Step controlsStep controls

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

6/22/07 Page 64

Server Side: Developer Build and Deploy

Shutdown server processes: Ctrl-C in command window.
Shutdown hook ensures clean shutdown.
Shutdown server processes: Ctrl-C in command window.
Shutdown hook ensures clean shutdown.

Change directory to build directory in your project
area using a command terminal.
Change directory to build directory in your project
area using a command terminal.

ant clean removes “dist” directory
ant build performs a smart build
ant jibx creates the JiBX bindings
ant deploy deploys build artifacts to run environment
ant uEngineWeb regression test web site

ant clean removes “dist” directory
ant build performs a smart build
ant jibx creates the JiBX bindings
ant deploy deploys build artifacts to run environment
ant uEngineWeb regression test web site

Start server processes and test.Start server processes and test.

AWP.TRG.SWCTR/TO6.ADE/CAVE.02 Module 2: Installation, Build, and Regression Test (Multiplatform)

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 3: MicroEngine Scripting (rev. 1)

June 22, 2007

6/22/07 Page 66

Prerequisites/Objectives
Prerequisites
– Access to an installation of ADE 1.0
– Familiarity with utilizing Eclipse for Java development
– Familiarity with Object Oriented Programming
– Programming experience in the Java programming language

ADE 1.0 utilizes Java 1.6

Objectives
– Understand how to create tasks and scripts for the MicroEngine

(uEngine)

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 67

uEngine Overview
Architecture
Tasks
JavaScript Scripting
Client Applications

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 68

Architecture
Uses Mozilla's freely available Rhino
– Same JavaScript engine in JDK 1.6, except that Mozilla version offers

more features
– Used in Eclipse

UEngineScript class simply call setScriptText(String
javaScriptCode) and run()
Subscription scripts compiled once for faster execution
Can include .js libraries in a script

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 69

Architecture: How it Works
Rhino returns the last executed global statement of the script
– That is, the last statement not in a function
– Sample Query for METARS Script (Slide 9) returns the execution of

metarQuery();
– UEngineScript will convert this to an Object[]

Because tasks should only operate on one data object, for
loops are used in the JavaScript
queryResults is a java.util.ArrayList object; Java objects cam
be used in the JavaScript script
Not forced into chain data, instead pass along the results of
each task execution

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 70

Tasks
Tasks extend ScriptTask
– Tasks are “Plain Old Java

Objects” (POJOs) with an
execute() method

– Tasks only operate on one
object

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 71

JavaScript Scripting
Benefits

Familiar syntax
Object Oriented scripts
– Reusable objects and methods
– Easier to update
– Abstract/hide code

Decision aids
– If statements, for loops, etc.

More customizable scripts

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 72

JavaScript Scripting: Sample GriB to
Image Script

gribRequest();

function gribRequest()
{

var plugin = "grib";
var query = new TermQuery(plugin);
query.setCount(3);
query.addParameter("paramid", "Temperature");
query.addParameter("levelinfo", "50000.0_Pa");
var queryResults = query.execute();
var responses = new Array();

for(i=0; i < queryResults.size(); i++)
{

var currentQuery = queryResults.get(i);
var fileIn = new FileIn(plugin, currentQuery);
var gribMap = new GribMap(plugin, "GribRGB", fileIn.execute(), currentQuery);
var imageData = gribMap.execute();
var colorMap = new ColorMapImage("GribRGB", imageData, gribMap.getGridGeometry());
var format = "png";
var imageOut = new ImageOut(colorMap.execute(), format, gribMap.getGridGeometry());
var fileOut = new FileOut(imageOut.execute(), format);
var makeResponse = new MakeResponseUri(fileOut.execute(), null, currentQuery.getDataURI(), format);
responses[i] = makeResponse.execute();

}

return responses;
}

gribRequest();

function gribRequest()
{

var plugin = "grib";
var query = new TermQuery(plugin);
query.setCount(3);
query.addParameter("paramid", "Temperature");
query.addParameter("levelinfo", "50000.0_Pa");
var queryResults = query.execute();
var responses = new Array();

for(i=0; i < queryResults.size(); i++)
{

var currentQuery = queryResults.get(i);
var fileIn = new FileIn(plugin, currentQuery);
var gribMap = new GribMap(plugin, "GribRGB", fileIn.execute(), currentQuery);
var imageData = gribMap.execute();
var colorMap = new ColorMapImage("GribRGB", imageData, gribMap.getGridGeometry());
var format = "png";
var imageOut = new ImageOut(colorMap.execute(), format, gribMap.getGridGeometry());
var fileOut = new FileOut(imageOut.execute(), format);
var makeResponse = new MakeResponseUri(fileOut.execute(), null, currentQuery.getDataURI(), format);
responses[i] = makeResponse.execute();

}

return responses;
}

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 73

JavaScript Scripting: Sample Query For
METARS Script

function MetarRequest(){}

function metarQuery(count)
{

var query = new TermQuery("metar");
query.addParameter("reportType", "METAR");
query.setCount(count);
var queryResults = query.execute();
return this.makeAsciiResponse(queryResults);

}

function makeAsciiResponse(queryResults)
{

var xmlResults = new Array();
var response = new Array();
for(i=0; i < queryResults.size(); i++)
{

var toXml = new AsciiToXml(queryResults.get(i));
xmlResults[i] = toXml.execute();
var makeResponse = new MakeResponseAscii(queryResults.get(i), xmlResults[i]);
response[i] = makeResponse.execute();

}

return response;
}

MetarRequest.prototype.metarQuery = metarQuery;

MetarRequest.prototype.makeAsciiResponse = makeAsciiResponse;

// Code the user writes:
var dataRequest = new MetarRequest();
dataRequest.metarQuery(3);

function MetarRequest(){}

function metarQuery(count)
{

var query = new TermQuery("metar");
query.addParameter("reportType", "METAR");
query.setCount(count);
var queryResults = query.execute();
return this.makeAsciiResponse(queryResults);

}

function makeAsciiResponse(queryResults)
{

var xmlResults = new Array();
var response = new Array();
for(i=0; i < queryResults.size(); i++)
{

var toXml = new AsciiToXml(queryResults.get(i));
xmlResults[i] = toXml.execute();
var makeResponse = new MakeResponseAscii(queryResults.get(i), xmlResults[i]);
response[i] = makeResponse.execute();

}

return response;
}

MetarRequest.prototype.metarQuery = metarQuery;

MetarRequest.prototype.makeAsciiResponse = makeAsciiResponse;

// Code the user writes:
var dataRequest = new MetarRequest();
dataRequest.metarQuery(3);

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 74

Client Applications
Clients can build Object Oriented JavaScript and include it in
the script behind the scenes so a user has to write very little
code to run scripts
Clients can extend uEngine functionality by adding
JavaScript methods
– Example: Calculate wind chill off MetarRecord returned by a

TermQuery

CAVE could use Eclipse plug-in architecture to embed a
JavaScript IDE and assist users in creating scripts

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 75

Client Applications

var metarData = new MetarData();
metarData.displayWindChill(true);
metarData.metarQuery();

A user only needs to write three lines if the library is imported or if
the client application includes it.

Example Query Using the METAR Script:

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

6/22/07 Page 76

Summary
Architecture includes .js libraries
– Supports subscriptions

Simpler tasks
– POJOs with an execute() method
– Eliminates chain data, metadata, and digester rules
– Less code

Advanced scripts
– Object Oriented potential
– Flexible customization
– Client applications can extend functionality of uEngine

AWP.TRG.SWCTR/TO6.ADE/CAVE-03.01 ADE-CAVE Module 3: MicroEngine Scripting (rev. 1)

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 4: Data Type Plug-in

June 22, 2007

6/22/07 Page 78

Notes
Portions of this module reiterate material previously
presented or provide additional information for the developer
and will not be covered in this session; these will be identified
as we proceed.
Questions? Please ask at any time

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 79

Objectives
Learn why the Plug-In pattern was chosen
Understand the architectural pattern of a Data Type Plug-In
Write a new Plug-In for a new data type
Put a MicroEngine task into a Data Type Plug-In

Estimated Time: 3 hours

Notes:
Some slides reiterate material previously presented, and are included
here for completeness. Others provide additional information for the
developer. These slides will not be covered in this briefing.
Questions? Please ask at any time.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 80

Prerequisites
Access to an installation of ADE 1.0
Familiarity with utilizing Eclipse for Java development
Familiarity with Object Oriented Programming
Programming experience in the Java programming language
– ADE 1.0 utilizes Java 1.6

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 81

Topics
Data Type Plug-In Concepts
Plug-In Archive/Build Details
AWIPS EDEX Plug-In Architecture
Data Record Objects
Data Plug-In Configuration
ADE Plug-in Creation Tool
Adding Plug-In to EDEX Ingest
Adding uEngine Data-Type Processing

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 82

Data Type Plug-In Concepts

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 83

Why a Plug-In Pattern?
Must be able to:
– Add new data processing capability with minimal impact to the

remaining system
– Extend a deployed system to new data sources
– Fully integrate new data sources into the system so that all the standard

display and analysis features can be used
– Add custom data transforms to a deployed system
– “Hot deploy” to add new data types to the existing system

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 84

What Is a Plug-In in Java Terms?
Plug-in:
– Encapsulates all processing needed for a data type
– Implements classes exposed through Java interfaces
– Classes accessed by interface, and data type through a plug-in factory

Plug-in Factory:
– Uses Java class loading to create the appropriate class for the

requested interface
– Is XML configurable

No change to existing code when new Plug-in is added
All data ingest completed through a Plug-in
– ASCII data processing in the MicroEngine: All Plug-In based!

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 85

Easy Adaptability to New Data Types
Plug-In Vision: Create a component that can be plugged
into a deployed system to adapt the system to a new data
type. Plug-in will enable ingest, storage, retrieval, and
transformation of data.
Plug-In Implementation: Java plug-in pattern with a class
loader to allow dynamic deployment. Meta data extraction
and indexing are based on a meta data store with a URI-
based data repository.
– Note: Plug-ins become possible with Java’s “Interface” class and

Java’s concept of class loading.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 86

Plug-In Interface to SOA Services

IngestSrv PersistSrv IndexSrv ProductSrv

NotifySrv AutoBldSrvUtilitySrv ColabrateSrv PurgeSrv

CAVE
Visualization

Client

ADE 1.0 Services

Mbean Mbean Mbean Mbean

Mbean Mbean Mbean Mbean Mbean

JMX Remote
Service Management

Client

GRIB Ingest
Observation Ingest
Radar Ingest
Satellite Ingest
SHEF Ingest
TAF Ingest

HDF5 Archive PostgreSQL Data Base uEngine
Subscription Manager

SubscriptionNotify
AlertNotify

Data Rendering
Notify Response

CAVE Scripting
Wx Drawing
Wx Warning

Data Interrogation

AdapterSrv

Mbean

Exec Adapter

Hydro Visualization

uEngine

Services Independent of End Points

Enterprise Service Bus – HTTP, JMS, Virtual Memory, File Endpoints

Warning Ingest

Localization Database Purge
HDF5 Purge

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 87

High-Level Concept Diagram
Meta Data stored in PostgreSQL
tables by data type (plug-in)
Raw Data repository independent of
data type
Queries work the same way with any
data type

Raw Data

PostgreSQL Index
Tables

URI-Based Raw Data
Repository

Satellite Wx Data

Data
Access
Layer

Database
Admin
Tool

Persist
Raw Data

Extract Meta Data
(Use Endpoint Data if Possible)

Enough for Unique
Retrieval

Create Meta Data
Document

Implementation
In

Plug-In

Data Type
Based Query

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 88

Java Files Involved in Plug-In Concept
Enables new / modified
data types to be
deployed to live systems
Enables new science
through new transforms
Plug-ins built and
packaged as separate
components

Wx Satellite Plug-in

<<Java Class>>
Plugin Core

Pattern +
Class Loader

<<Java Class>>
Implementation

Plug-in Jar Container

XML Plug-in
Configuration

XML Plug-in
Configuration

XML Plug-in
Configuration

<<Java Class>>
Implementation<<Java Class>>
Implementation<<Java Class>>

Implementation<<Java Class>>
Implementation

<<ESB Service>>
Plug-in Capability

Becomes
Available to

Services

<<JAVA Virtual Machine>>
ESB Container

<<Java Interface>>
Extract Metadata

<<Java Interface>>
Store Data

<<Java Interface>>
Decode Data

<<Java Interface>>
Transform Data

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 89

Data Type Plug-In Factory Concept
The Vision: Data type plug-in provides the means for
ingesting data into the system and exporting data from the
system. Internally (to the extent possible), this should be
handled in a type neutral format.
The Implementation: Goal of the data type plug-in definition
is to encapsulate the data handling of a data capabilities into
a package having well-defined interfaces.

The Factory: In OO, a “factory” is defined as a class that
creates and delivers instances of a class implementing a
specific interface. Client requests the instance using meta
data, for example, the name of the plug-in.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 90

Factory Concept

I need a
METAR decoder.

Send METAR Decoder

1. Client uses data type name (METAR) to
request a decoder

2. Factory uses the XML configuration file to
determine the class to create

3. Factory returns the MetarDecoder class
(which is referenced by IMessageDecoder
interface)

1

2

3
<<interface>>

IMessage Decoder

+decode()
+setMessage(byet[]})

+decode()
+setMessage(byet[]})

<<class>
MetarDecoder

+decode()
+setMessage(byet[]})

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 91

AWIPS EDEX Data Flow & Plug-Ins

Data type plug-in used for processing as data flows from Ingest Server to Client
The plug-in architecture allows implementation of generic (data neutral) services
– Notes:

Except for Ingest, a single service handles all data types.
Ingest uses a separate service for each data type, but all use the same Java class.

Plug-in architecture supports data flexibility

AutoBldSrvIngestSrv PersistSrv IndexSrv NotifySrv

Subscription uEngine Client

ProductSrv
Index Persist

Data Access Layer

Plug-in capabilities are used by the various EDEX services (in red)

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 92

Plug-In Relationship to Meta Data
Each Ingest Service endpoint
works with a specific type of data
– Endpoint receives a file from the file

system or via Java Message
Service (JMS) message

– IngestSrv uses information obtained
from endpoint configuration to
request appropriate plug-in to
process the file

– Plug-in decodes the meta data,
then passes the meta data
(including plug-in name) to the
Persist Service

IngestSrv
Mbean

File
System

1

Plug-in

2

3

PersistSrv
Mbean

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 93

Plug-In Relationship to Data Persistence
Plug-In responsible for converting raw data into a format ready for
persistence
– For multi-record files, this includes separation of file into records

Each Ingest Server endpoint outputs the “Ready to Store” data for
transfer to the Data Access Layer (DAL) for storage

IngestSrv
Mbean

PersistSrv
Mbean

URI-Based Raw Data
Repository (HDF5)

1

Data Access Layer (DAL)

2

3

Note: Most of the plug-in work is done in the Ingest Server.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 94

Plug-in Relationship to Data Indexing
Plug-in responsible for extracting the Meta Data from the data
Each Ingest Server endpoint passes the Meta Data to the Index Server
via the Persist Server

PersistSrv
Mbean

IndexSrv
Mbean

PostgreSQL
Database

altIngestSrv
Mbean

1 2
Data Access Layer (DAL)

4

3

May bypass Persist Server in some cases

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 95

Plug-In Relationship to Product Server

Product Server allows Clients
to order and subscribe for
visualization products
MicroEngine utilizes data Plug-
ins to process raw data into the
visualization product

ProductSrv
Mbean

Micro
Engine

3

Subscription

2

1

Plug-in 4

I need pretty
picture.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 96

Plug-In Relationship to Notification
Notification triggers automatic building of visualization products
Auto build process utilizes plug-ins for processing

NotifySrv AutoBldSrv

Mbean Mbean

Micro
Engine

1

3

Subscription

2

3

Plug-in

2

Note: Plug-in utilization is mainly in MicroEngine.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 97

BREAK

6/22/07 Page 98

Plug-In Archive/Build Details

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 99

AWIPS EDEX Project Organization
About This Section

Examines the organization of the ADE’s EDEX code base,
which doubles as a build structure
Outlines a plug-in for decoding “message” data – as
examples for this section and code examples for the
following sections,
– Notes:

A “message” data record is a plain ascii text record consisting of a WMO
header and a record body, while “message” decoding consists of separating
the header and body and parsing the WMO header.
This plug-in illustrates how to create, build, and configure a new data-type
plug-in for EDEX.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 100

AWIPS EDEX Project Organization

ADE EDEX baseline separated into folders to support manual and/or
automated builds
Plug-in code location: under the Extensions Directory. Core plug-in
support: under EDEX

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 101

AWIPS Plug-In Directory Structure
Each plug-in contained in a
directory structure under
“trunk/awips/extensions”
Two main branches in the plug-in
code:
– src/… contains the code of the

plug-in, any supporting classes,
and any uEngine tasks.

– res/… contains configuration and
other build-related files

Directory structure under “src”
defines the package structure for
the plug-in
– All current plug-ins located in

“com.raytheon.edex” package tree
– Additional directories added as

needed

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 102

AWIPS Plug-in Directory Structure Considerations
Names of plug-ins
– Unique name for each plug-in
– Always start with “plugin-”
– Name for the “message” plug-in: “plugin-message”

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 103

AWIPS Plug-in Directory Structure Considerations
Three build-related files in each plug-in:
– build-component.properties

Located in the main plug-in directory
Contains the build dependencies
Plug-ins normally dependent on “common” and “uEngine”

– binding.xml
Located in the “res” directory of the plug-in
Required only if the plug-in defines any files that require JiBX-based
serialization

– client-includes.dat
Located in the main plug-in directory
Identifies classes to include in the “client” version of the plug-in

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 104

AWIPS Plug-In Directory Structure
First step in creating a plug-in:
Create the basic directory and
build structure
– Using Eclipse (or a file system

browser), add basic directory
structure for plug-in under
“trunk/awips/extensions”

– Note plug-in name, “message”, at
the lowest level of the directory
structure

Next: Create basic build file,
build-component.properties
– In most cases, the required

dependencies are “common” and
“uEngine” (as shown)

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 105

AWIPS EDEX Build Files To Modify
Modify these build files when adding a new data type plug-in:
– trunk/awips/build/deployments/deployment.properties – add the plug-

in’s main code directory to the deployment list
– for the “message” plug-in, this is plugin-message

Note: This topic will be revisited later.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 106

AWIP EDEX Plug-In Jar Structure

Each JAR named to match the plug-in directory in CM
– CM location for the current METAR plug-in: “trunk/awips/extensions/plugin-

metar”
– The resulting jar: “plugin-metar.jar”
META-INF directory and MANIFEST.MF generated as part of the build
process

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 107

BREAK

6/22/07 Page 108

AWIPS EDEX Plug-In Architecture

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 109

Makeup of the Plug-In Architecture
The Plug-In Factory, which provides run-time access to the
various data-type plug-ins

The Java classes needed to perform the tasks of the plug-in

A Java class providing a data object for each record of the
data-type

Build files that control creation of the plug-in

Configuration files that define the operation of the plug-in

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 110

AWIPS EDEX Plug-In Factory
Plug-In Factory provides a
configurable interface by which an
EDEX Service may obtain the plug-
in for a data-type

Factory configuration for a specific
plug-in contained in “plugin.xml”,
which is found in the plug-in’s
“res/conf” directory
– plugin.xml read by the EDEX

Configuration Factory

– Provides the information that allows
the Plug-In Factory to deliver the
correct class(es) for a specific data
type

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 111

Plug-In Architecture:
Data Record Classes

Each data-type record represented internally by a Java class object called
a “Data Record” object
– Data Records extend the AbstractDataRecord abstract class (which is part of

com.raytheon.edex.plugin.data package)
AbstractDataRecord provides the minimal fields required for EDEX data persistence

Abstract classes in com.raytheon.edex.plugin.data package also exist for WMO text
and binary data

Data Record object created by the data-type decoder and used by the
Data Access Layer (DAL) for meta data and data persistence
– DAL provides a layer of abstraction above the data persistence mechanism that

hides the actual implementation from the plug-in

Note: More on Data Record objects in the next section.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 112

Plug-In Architecture:
Data Access Layer Design

PostGreSQL
Database

Raw Data

Persist
Service
Persist
Service

ESB

HDF5
Repository

JBoss
Cache
JBoss
Cache

Plug-ins

uEngineuEngine

CAVECAVETest
Driver
Test

Driver

Data Access Layer

Data Layer
Access Interface

Data Layer
Access InterfaceData

Metadata

(Mule)

Meta Data
DAO

Meta Data
DAO

Data
DAO
Data
DAO

D
A
O
s

Data

Queries

Index
Service

Scripts

Index
Service

This diagram shows the three-tier
design approach for AWIPS EDEX.
The business layer includes the ingest
service, the test driver, and CAVE. The
test driver and CAVE communicate with
the data access layer (DAL) via the
uEngine.

The DAL provides an interface to the
business layer to decouple data storage
implementation from business logic.
This interface receives update and
query requests. The DAL then
delegates appropriate data access
objects (DAO) to interact with the data
sources. The results are organized and
returned to the business layer via the
data layer interface.

This design enables the user to swap
data sources without affecting the
business layer, although a new DAO is
necessary if the persistence method is
changed.

This diagram shows the three-tier
design approach for AWIPS EDEX.
The business layer includes the ingest
service, the test driver, and CAVE. The
test driver and CAVE communicate with
the data access layer (DAL) via the
uEngine.

The DAL provides an interface to the
business layer to decouple data storage
implementation from business logic.
This interface receives update and
query requests. The DAL then
delegates appropriate data access
objects (DAO) to interact with the data
sources. The results are organized and
returned to the business layer via the
data layer interface.

This design enables the user to swap
data sources without affecting the
business layer, although a new DAO is
necessary if the persistence method is
changed.

Ingest
Service
Ingest
Service

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 113

Plug-In Architecture:
The Plugin Class

Basic functionality of a data type plug-in provided via the
Plugin class
– Clients using a data type plug-in create an instance of the Plugin class

Plugin class uses the plug-in factory to obtain additional classes to perform
specific tasks, such as file decoding

– Clients use Plugin class methods to perform data operations

Data type-specific functionality provided in two ways
– Implementing plug-in interfaces
– Configuring the DAL

Note: More on both data type-specific functionality concepts later.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 114

Plug-In Architecture:
Plugin Class Design

Seven methods available in the Plugin
class:
– Plugin() – instantiates the class and

obtains supporting class references from
the plug-in factory

– getDataURI() – creates the dataURI
from the meta data

– cacheData() – adds the data record to
the EDEX Local data cache

– getMatchURI() – creates a partial data
URI from the input

– getSeparator() – gets the record
separator for the data

– getWriter() – gets the Message Writer
used to store the data.

Note: Method arguments are as
specified in the class diagram.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 115

Plug-In Architecture:
Plugin Class Utilization

IngestSrv class makes use
of Plugin class to process
various data types
generically
– IngestSrv.process() uses a

Plugin class instance of the
appropriate data-type to
separate data into individual
records

– IngestSrv.process() calls the
decode() and cacheData()
methods to process each data
record Note: Most logging and comments have

been removed to save space.
Note: Most logging and comments have
been removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 116

Plug-In Architecture:
Java Interfaces

Additional functionality specified by three Java interfaces:
– IRecordSeparator: Provides for separating data into individual

records
– IMessageDecoder: Provides for decoding a single data record
– IMessageWriter: Provides for converting a single record for

persistence

Implementation of these three interfaces provided by each
plug-in

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 117

Plug-In Architecture:
IRecordSeparator Functionality

Defines functionality needed to separate data into individual
records
– Record Separator for a data-type obtained from the plug-in using the

IProduct’s getSeparator() method

Each Plug-In for data that contains multiple records must
implement IRecordSeparator
– Implementation details depend on the format of the data file

Two options for a Plug-In for data that contains a single
record:
– Can provide a Record Separator
– Can use RecordSeparatorImpl

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 118

Plug-In Architecture:
IRecordSeparator Design

IRecordSeparator
implements an “iterator” like
interface via three methods
specified in the
IRecordSeparator Interface:
– setData() – sets the entire file

into the Record Separator
– hasNext() – determines if the

file has another record to
process

– getRecord() – returns the next
record in the file

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 119

Plug-In Architecture:
IRecordSeparator Utilization

IngestSrv class makes use of
various data-type Plug-Ins
– IngestSrv.process() – uses the

data-type Plug-In instance to
obtain the Record Separator

– IngestSrv.process() – calls the
setData() method to pass the file
to the Record Separator

– IngestSrv.process() – calls the
hasNext() and getRecord()
methods to iterate the data
records

Note: most logging and comments have been
removed to save space.
Note: most logging and comments have been
removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 120

Plug-In Architecture:
IRecordSeparator Example

This example shows the
IRecordSeparator Implementation
in Message plug-in. The basic class
code was generated by Eclipse
using the ADE Plug-In Tool.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IRecordSeparator:

– Grib.Separator

– MesowestSeparator

– MetarSeparator

This example shows the
IRecordSeparator Implementation
in Message plug-in. The basic class
code was generated by Eclipse
using the ADE Plug-In Tool.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IRecordSeparator:

– Grib.Separator

– MesowestSeparator

– MetarSeparator

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 121

Plug-In Architecture:
RecordSeparatorImpl

A Java class that provides a Record Separator for a data-
type which consists of files containing single records
– Package: com.raytheon.edex.plugin

All IRecordSeparator methods are implemented
– Calling setData() initializes the class

Prior to calling setData(), hasNext() returns “false”
– Calling getRecord() returns the entire file

Prior to calling getRecord(), hasNext() returns “true”
After calling getRecord(), hasNext() returns “false”

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 122

Plug-In Architecture:
IMessageDecoder Functionality

Defines the functionality needed to decode a data record to
obtain its meta data as defined by the plug-in
– Message Decoders do not normally implement IMessageDecoder

directly
– Message Decoders normally extend AbstractMessageDecoder

Each plug-in must provide a message decoder
– Plug-in’s message decoder may be accessed via the Plug-In Factory’s

getDecoder() method
Note: Normally, a message decoder is accessed privately within the plug-in,
rather than via the Plug-In Factory.

– Message decoder used by the Plugin class’s decode() method to
perform the actual data decoding

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 123

Plug-In Architecture:
IMessageDecoder Design

This diagram shows the methods
specified in the IMessageDecoder
Interface. Also show is the abstract
AbstractMessageDecoder class.

IMessageDecoder specifies two
methods that the decoder must
provide:

setMessage() – initializes the
decoder with the message to
decode

decode() – performs the actual
decoding, creating the data
object

Note: setMessage() is provided by
AbstractMessage Decoder.

This diagram shows the methods
specified in the IMessageDecoder
Interface. Also show is the abstract
AbstractMessageDecoder class.

IMessageDecoder specifies two
methods that the decoder must
provide:

setMessage() – initializes the
decoder with the message to
decode

decode() – performs the actual
decoding, creating the data
object

Note: setMessage() is provided by
AbstractMessage Decoder.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 124

Plug-In Architecture:
IMessageDecoder Utilization

Plugin class uses the data-type plug-in’s implementation of the
IMessageDecoder interface to decode data records
– Plug-In Factory used in the constructor to get the decoder
– Ddecode() method performs the actual decoding

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

Creation of IMessageDecoder
implementation class.
Creation of IMessageDecoder
implementation class.

Utilization of IMessageDecoder
implementation class.
Utilization of IMessageDecoder
implementation class.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 125

Plug-In Architecture:
IMessageDecoder Example

Note: The setMessage() method is provided by
the super class.
Note: The setMessage() method is provided by
the super class.

This example shows the
IMessageDecoder implementation
in Message plug-in. The basic class
code was generated by Eclipse
using the ADE Plug-In Tool.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IMessageDecoder:

– GribDecoder

– MesowestDecoder

– MetarDecoder

– RadarDecoder

– SatelliteDecoder

This example shows the
IMessageDecoder implementation
in Message plug-in. The basic class
code was generated by Eclipse
using the ADE Plug-In Tool.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IMessageDecoder:

– GribDecoder

– MesowestDecoder

– MetarDecoder

– RadarDecoder

– SatelliteDecoder

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 126

Plug-In Architecture:
IMessageWriter Functionality

Defines the functionality needed to persist the data from a
decoded data file into the EDEX data store
– EDEX uses HDF5 for data persistence

Each data-type plug-in must provide a message writer
For most point data (e.g., METARs, TAFs) the meta data
contains the entire, decoded, contents of the file
– Note: In this case, the plug-in need not implement a message writer.

Rather, it can specify that it is using the RecordWriterImpl as its
message writer.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 127

Plug-In Architecture:
IMessageWriter Design

This diagram shows the
methods specified in the
IMessageWriter Interface. Also
shown is the RecordWriterImpl
class.

IMessageDecoder specifies a
single method that the writer
must provide – write() – which
formats the data for storage in
HDF5 and returns an
AbstractStorageRecord
-derived object.

This diagram shows the
methods specified in the
IMessageWriter Interface. Also
shown is the RecordWriterImpl
class.

IMessageDecoder specifies a
single method that the writer
must provide – write() – which
formats the data for storage in
HDF5 and returns an
AbstractStorageRecord
-derived object.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 128

Plug-In Architecture:
IMessageWriter Utilization

For data persistence, the DAL’s
BlobData class uses the data-
type plug-in’s message writer to
write the data to the HDF5
archive
– Plugin class instance used to

obtain the message writer for the
data

– Message writer’s write() method
used to create an
AbscractStorageRecord-derived
object that can be stored

– BlobDao performs the actual
storage operation

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 129

Plug-In Architecture:
IMessageWriter Example

This example shows an
IMessageWriter implementation.
RecordWriterImpl, which
provides a dummy write()
method, us used for plug=ins
that do not require HD5
persistence.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IMessageWriter:

– GribWriter

– RadarWriter

– SatelliteWriter

This example shows an
IMessageWriter implementation.
RecordWriterImpl, which
provides a dummy write()
method, us used for plug=ins
that do not require HD5
persistence.

Code Examples: The following
classes in the AWIPS EDEX
baseline are implementations of
IMessageWriter:

– GribWriter

– RadarWriter

– SatelliteWriter

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 130

Plug-In Architecture:
RecordWriterImpl

A Java class that provides a null Message Writer
– Package: com.raytheon.edex.plugin
– Provides an empty write() method

Intended for a data-type whose files contain data that are
fully decoded as meta data on ingest
– ASCII data such as METAR records handled by EDEX in this manner

Should be used only when the data are not processed by
PersistSrv

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 131

Data Record Objects

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 132

Plug-In Architecture:
Data Record Functionality

Data Records:
– Provide the internal representation of the meta-data and data produced

by the data decoder
– Implement the AbstractDataRecord abstract Java class, which provides

the basic fields required for EDEX data persistence

Each AbstractDataRecord implementation:
– Provides a set of fields for the data-type’s meta data

Additional fields may be provided decoded data values that are not part of the
meta data

– May provide a data field for an internal representation of the actual data
For example, the GribRecord class a Java float array, which is loaded with
the GRIB data when the record is decoded

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 133

Plug-In Architecture:
Data Record Design

This diagram shows the
structure of the
AbstractDataRecord class and
its two main subclasses.

AbstractTextDataRecord is
used in EDEX as the base
class for text-based point
data such as METAR and
TAF reports.

AbstractBlobDataRecord is
used in EDEX as the base
class for binary data such
as GRIB records and
satellite images.

Note: The Data Record
classes are essentially
container classes, providing
private fields and public
access methods.

This diagram shows the
structure of the
AbstractDataRecord class and
its two main subclasses.

AbstractTextDataRecord is
used in EDEX as the base
class for text-based point
data such as METAR and
TAF reports.

AbstractBlobDataRecord is
used in EDEX as the base
class for binary data such
as GRIB records and
satellite images.

Note: The Data Record
classes are essentially
container classes, providing
private fields and public
access methods.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 134

Plug-In Architecture:
Data Record Utilization

This example shows how the
MetarDecoder creates and
starts to populate a
MetarRecord object.

For details on how the
decoding is performed, refer to
the MetarDecoder source
code in the EDEX baseline.

This example shows how the
MetarDecoder creates and
starts to populate a
MetarRecord object.

For details on how the
decoding is performed, refer to
the MetarDecoder source
code in the EDEX baseline.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 135

Plug-In Architecture:
Data Record Example

Note: Most logging and comments have been
removed to save space.
Note: Most logging and comments have been
removed to save space.

This example shows the
AbstractDataRecord implementation in
MessagePlug-in.

Note that this class extends
AbstractTextDataRecord since a FooBar
record is an ascii text-based data record.

The basic class code was generated by
Eclipse using the ADE Plug-In Tool.

Code Examples: The following classes in
the AWIPS EDEX baseline are
implementations of AbstractDataRecord:

– GribRecord

– RadarRecord

– SatelliteRecord

– MesowestRecord

– MetarRecord

This example shows the
AbstractDataRecord implementation in
MessagePlug-in.

Note that this class extends
AbstractTextDataRecord since a FooBar
record is an ascii text-based data record.

The basic class code was generated by
Eclipse using the ADE Plug-In Tool.

Code Examples: The following classes in
the AWIPS EDEX baseline are
implementations of AbstractDataRecord:

– GribRecord

– RadarRecord

– SatelliteRecord

– MesowestRecord

– MetarRecord

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 136

BREAK

6/22/07 Page 137

Data Plug-In Configuration

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 138

Plug-In Architecture:
Required Configuration Files

Performance and availability of an EDEX plug-in
determined by a set of five configuration files:
– plugin.xml – basic file mapping the plug-in implementation classes

to the plug-in for use by the Plug-In Factory
– attributes.xml – optional file defining attribute names for use in the

plug-in
– binding.xml – optional file defining JiBX mappings for data objects

in the plug-in
– plug-in-name.db.xml – file defining PostgreSQL meta data table

structure as required by the plug-in
– plug-in-name.db.xml – file mapping the PostgreSQL meta data

table to the Data Record class for Hibernate

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 139

Plug-In Configuration:
plugin.xml

pluxin.xml provides the
mapping of the plug-in’s
components to attribute
names used by the Plug-In
Factory for class creation
XML provides:
– the plug-in name
– the required interface

implementations
– additional attributes used by

the plug-in
Note: See the other EDEX plug-

ins for additional examples.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 140

Plug-In Configuration:
attributes.xml

attributes.xml defines the configuration attribute names for
use by the plug-in
– Name tag contains “ATTRIBUTE_NAMES”
– Other tags may be added as needed

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 141

Plug-In Configuration:
binding.xml

Binding.xml
defines the
JiBX
bindings for
the plug-in

This example shows the bindings file for the MessagePlug-in.

Note that most of the fields are inherited from two base classes:
AbstactData Record and AbstractTextDataRecord.

In each “value” tag:
Name attribute defines the field name in the XML.
Field attribute defines the class field to capture and must
match the field in the class.
Setting usage to “optional” allows the binding to work on
partially populated Classes.

This example shows the bindings file for the MessagePlug-in.

Note that most of the fields are inherited from two base classes:
AbstactData Record and AbstractTextDataRecord.

In each “value” tag:
Name attribute defines the field name in the XML.
Field attribute defines the class field to capture and must
match the field in the class.
Setting usage to “optional” allows the binding to work on
partially populated Classes.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 142

Plug-In Configuration:
table-name.db.xml

table-name.db.xml defines
the meta data table
structure for the
PostgreSQL database
Items defined:

The table name
The data class represented
Any secondary tables
Definition for table columns

This example shows a partial definition of the main database table used for
the METAR plug-in’s meta data. The child tables are defined in separate
table definitions.

This example shows a partial definition of the main database table used for
the METAR plug-in’s meta data. The child tables are defined in separate
table definitions.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 143

Plug-In Configuration:
table-name.db.xml

Contents of column definition island in the table definition file:
– Name – the name of the column
– columnType – the data type for the column, e.g., integer, varchar, etc
– constraintType – the constraint on the table, e.g., “PRIMARY KEY” or

“UNIQUE”, “none”
– precision – the size of the field, used only for varchar
– dataURI – when true, this field is part of the data URI used to identify the object

Note: Details on creating this file are included in the ADE documentation.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 144

Plug-In Configuration:
plug-in-name.hbm.xml

plug-in-name.hbm.xml
defines the mapping of
Data Record class to
PostgreSQL database
meta data table for
Hibernate

Note: Details on creating the
Hibernate file are included in
the ADE documentation.

This example is a partial listing of the Hibernate file for the METAR Record
class used by obs plug-in.
This example is a partial listing of the Hibernate file for the METAR Record
class used by obs plug-in.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 145

BREAK

6/22/07 Page 146

ADE Plug-In Creation Tool

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 147

AWIPS Plug-In Creation Tool:
New With ADE 1.0
AWIPS Plug-In Creation Tool

Implemented as an Eclipse plug-in
Once installed, may be used like any
other element of the Eclipse IDE
Automates most of the work required
to generate the initial files for a data-
type plug-in
– Automatically creates the required

directory structure for the plug-in
– Generates class stubs for the required

Java classes
– Generates initial configuration and build

files

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 148

Installation of ADE Plug-In Creation Tool
Plug-in Creation Tool ships with the ADE EDEX baseline,
located in opt/tools/plugins
– the file is com.raytheon.edex.pluginCreator_1.0.0.jar

To install the Plug-in Creation Tool:
– Copy the jar file into the plugins directory in your Eclipse installation
– Restart Eclipse

When Eclipse restarts, the Plug-in Creation tool will be
available

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 149

Accessing ADE Plug-In Creation Tool
To access the plug-in creation tool:

Select Show View→Other… from the Window
menu to display the Show View dialog
On the Show View dialog, type Plugin Creator
in the text box (this will locate the Plugin
Creator icon)
Select the Plugin Creator icon and click OK.
This adds the Plugin Creator to your Eclipse
Move and position the tool in a convenient
location. Once positioned, Eclipse will
remember the location, even if you close and
reload it

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 150

Creating a Plug-In With the Tool
To create a plug-in with the ADE

Plug-In Creation Tool:
Enter the plug-in naming
information into the tool:
–Organization domain
–Organization name
–Plug-in name

Check “Write Necessary” if the
plug-in should implement a writer
–Binary data should include a

writer
Check “Separator Necessary” if the
plug-in should implement a writer
and/or a separator.
–Multi record data should include

a separator
Note: For the message plug-in, which is a

text based product, no writer is desired.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 151

Creating a Plug-In With the Tool (cont’d)
Specify the fields for the data
representation:
– Enter the field name
– Select the field type
– Click to include in data URI
– Add the field to the plug-in definition
Caution: Use care when deciding
which fields to include in the data URI.
Include enough fields to uniquely
identify the data.

Note: The data URI provides a unique
identifier of the data in the PostgreSQL
database, and acts as the HDF5 pointer for
binary data.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 152

Creating a Plug-In With the Tool (cont’d)
For the message plug-in,
there are two data fields:
header and body. Because
the header uniquely identifies
the message, no other fields
are needed for the data URI.
Once the fields for the data
have been added, use the
browse button to display the
Select Output Path dialog
and select the location to
create the plug-in.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 153

Creating a Plug-In With the Tool
The Select Output Path dialog
provides a tree control to browse to
the desired output directory. (Only the
final directory is displayed in the
Folders text box.)
– Note: The plug-in is created in a

subdirectory of the directory you select

For the “message” plug-in, we will
create the code in the EDEX
extensions directory. The folder
created will be plugin-message.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 154

Creating a Plug-In With the Tool (cont’d)
Generate the plug-in code:
– Click the Generate Plugin button
– The Confirm dialog is displayed
– Click Yes to generate the plugin

Once the plug-in has been
generated, close the plug-in creation
tool

Note: In order for Eclipse to pick up the new
code, you will need to refresh the project
display.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 155

Creating a Plug-In With the Tool
Once the plug-in has been created using the tool, any code
needed to provide functionality may be added. This includes
code for any helper classes and for any μEngine tasks.

One final reminder: The plug-in’s name must be added to the
deployment properties file (see slide 29).

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 156

Adding Plug-In to EDEX Ingest

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 157

Plug-In Architecture:
Adding the Ingest Endpoint

In this section: Details for adding the data-type to the Ingest
component
– Consists of setting up Mule endpoints to ingest the data

To add the data-type plug-in to the Ingest Server, add a Mule
descriptor to the ingest configuration file, ingest.xml.
– For data that may be delivered by file – useful for testing – add

appropriate configuration to fileToJMS.xml

All configuration files located in opt/esb/conf folder in the
ADE AWIPS EDEX baseline

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 158

Plug-In Architecture:
Adding the Ingest Endpoint

This example shows the mule-descriptor for the Obs data plug-in. The
values are in bold italic. For the message data type, we change:

– metar to message

– obs to message

Because this is a text data type, we do not change indexVMQueue.

This example shows the mule-descriptor for the Obs data plug-in. The
values are in bold italic. For the message data type, we change:

– metar to message

– obs to message

Because this is a text data type, we do not change indexVMQueue.

Note: The modified descriptor appears on the next slide.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 159

Plug-In Architecture:
Adding the Ingest Endpoint

This example is the completed mule-descriptor for message ingest.This example is the completed mule-descriptor for message ingest.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 160

Adding uEngine Data-Type Processing

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 161

Plug-In Architecture:
Adding a uEngine Task

A data-type plug-in that requires special processing may include data-
type specific uEngine tasks
– uEngine tasks extend the abstract ScriptTask class
For basic data retrieval the uEngine provides many of the tasks needed to
process data
– For ASCII point data tasks exist to convert the data to XML format for

retrieval
– For blob data such as GRIB data the uEngine includes tasks for

processing the data and converting it to visualization products
Specialized tasks may be created for specific data types
– Example: for the email message discussed in the homework, it might be

desirable to create a uEngine task that would send the email

Note: Creating a uEngine task is beyond the scope of this tutorial. For more
information, see the Micro Engine Scripting module.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 162

Wrap-Up

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 163

Summary
What we just learned
Future evolution of the plug-in design
Homework and where to get the solutions

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 164

Resources
On the ADE 1.0 DVD
– Current plug-in code available for examination in the EDEX baseline
– JavaDoc documentation for plug-ins available
– AWIPS EDEX design documents – location TBD
– AWIPS ADE 1.0 Training Materials – location TBD

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 165

Lab Work / Home Work

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 166

Hands-On Exercise: Data Type Plug-In
Instructions
1. Review the code for the Satellite Plug-In.
2. Test the plug-in by ingesting data and retrieving products.
3. Complete the code for the Message Plug-in.
4. Write a plug-in to handle “email-like” messages arriving on

EDEX. Assume that each message has two main parts –
the message header and the message body. The message
header will have five semicolon-terminated lines: Date;
sender; addressee; cc address; subject. The body will have
zero or more lines terminating with an end-of-message
token (three equal signs) on a separate line. Each file may
contain multiple messages. (Sample messages appear on
the next slide.)

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

6/22/07 Page 167

Hands-On Exercises: Data Type Plug-In
Sample Messages for the Final

Exercise
1. A complete message. Note

that each header element is
on a separate line.

2. A message with a missing
header element. The
missing element is denoted
by a line containing only a
semicolon.

AWP.TRG.SWCTR/TO6.ADE/CAVE-04.00 Module 4: Data Type Plug-in

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 5: Service Oriented Architecture (SOA)

June 22, 2007

6/22/07 Page 169

Objectives
Understand the architectural pattern of a Service Oriented
Architecture (SOA) Service
Understand how services are written
Understand how services are integrated into the system
Understand how to monitor and test an SOA Service

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 170

SOA Service Design Pattern:
Wrap the Interface to the ESB/Container

+onCall()
+register()

+process()

Hides Interface Details to Container
Extracts Message
Calls +process() on Return
Reports exceptions

Registers with JMX for
Remote Monitoring

Does the Work of the Service
Return Puts Message on Outbound
Endpoint

Required for JMX
Management of User-Defined
Attributes

AbstractMessageSrvAbstractSrvMBean

SBNsatIngestSrv

AsciiIngestSrvMBean

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 171

AbstractMessageSrv

+onCall()
+register()

ESB Message Event Handling to Service
Reference to Mule ESB
events

Extracts message out
of Mule ESB event

Executes +process()
Method of sub class

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 172

SOA’s Service Process Method
Retrieving the message
as a byte[]
Retrieving the message
as a byte[]

Getting a reference to the
Plugin
Getting a reference to the
Plugin

Decoding the file name to get
meta data
Decoding the file name to get
meta data

Putting the store() on the
Outbound Endpoint
Putting the store() on the
Outbound Endpoint

Sending a message to
the Outbound Endpoint
Sending a message to
the Outbound Endpoint

SBNSatlngestSrv

+process()

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 173

ingest.xml

Wiring the SOA Service Into the Container

Class reference to
SOA Service implementation

Class reference to
SOA Service implementation

Outbound Endpoint
Virtual memory queue

SEDA scaled

Outbound Endpoint
Virtual memory queue

SEDA scaled

Inbound Endpoint is a ESB
File sniffer with dir reference
Inbound Endpoint is a ESB

File sniffer with dir reference

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 174

start.bat
start

Mule ESB/ Container Startup Reads Wiring

SBNsatIngestSrv
is wired in index.xml

SBNsatIngestSrv
is wired in index.xml

Mule ESB uses library scanning to
build CLASSPATH

(concept borrowed from ANT)

Mule ESB uses library scanning to
build CLASSPATH

(concept borrowed from ANT)

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 175

JMX Console Connects to Mule ESB Runtime
(JMX Is a T05 Capability, But T04 Has Some Basics)

SBNsatIngestSrv
Remote Monitoring Through JMX

SBNsatIngestSrv
Remote Monitoring Through JMX

Connect JMX to Mule
(activeMQ is automatic)
Connect JMX to Mule

(activeMQ is automatic)

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 176

Exercise: Monitoring an SOA Service
SBNsatIngestSRV Monitoring
Startup: Server Process {activeMQ, Mule, Tomcat}
1. Monitor Mule’s log file.
2. Connect JMX console to Mule.
3. Note statistics with regard to SBNsatIngestSRV.
4. Ingest a raw IR satellite file.
5. Look at what happened to the log file and JMX console.

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

6/22/07 Page 177

Extra Credit: Debug SOA Service
Same Exercise as Before but With Step-By-Step Debugging
1. Attach Eclipse IDE debugger to Mule.
2. Set breakpoint toward the beginning of the +process()

method in SBNsatIngestSrv.
3. Ingest the raw IR satellite file.
4. Watch as the breakpoint is hit.
5. Step through the code from the breakpoint, watching the

variables as they change.

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.00 Module 5: Service Oriented Architecture (SOA)

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 6: CAVE-Underlying Framework and
Rendering

June 22, 2007

6/22/07 Page 179

Objectives
General Introduction to CAVE
Understand How CAVE Renders Geospatial, Vector, and x-y
Data

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 180

Motivation and Goals of CAVE
Minimize GUI infrastructure, Maximize Reuse
Performance
Extendability

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 181

CAVE: Vision
Bring together the visualization capabilities found in
N-AWIPS, D2D, GFE, FX-C, FX-Net, and the Hydro GUIs in
a common framework
Maximize rendering and framework patterns reuse across
GUI applications to minimize maintenance costs

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 182

CAVE Top-Level Concept

Customization Plugins

Eclipse Rich Client PlatformEclipse Rich Client Platform

RCP Eclipse Plugins

Visualization Core

Raster/Vector Rendering

ESB transport [jms|http|https|soap|ftp|tcp|…]

Enables Local/
Remote Data

Sharing

Enables Local/
Remote Data

Sharing

ACTION Script
Message

Response
Message

Data to Support
Demo2

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 183

Goal 1: Minimize Infrastructure, Maximize Reuse
Developing boilerplate code: Waste of time and effort. Been
done before, and probably better

CAVE utilizes Eclipse Rich Client Platform for its
infrastructure
– Implemented a set of plug-ins for Eclipse Rich Client Platform

CAVE in ADE 1.0 has 400 Java Classes in approximately 50 plug-ins

Other infrastructure:
– GeoTools for geo-location
– Mule for communication
– Many other Open Source products (vecmath, units, etc.)

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 184

Goal 1: Minimize Infrastructure, Maximize Reuse
Architectural Diagram

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 185

Goal 1: Minimize Infrastructure, Maximize Reuse
Eclipse RCP

Minimal set of plug-ins needed to build a rich client
application collectively known as Rich Client Platform

Eclipse Platform

SearchSearch

DebugDebug

HelpHelp

UI IDEUI IDE
LTKLTK

TeamTeam

OSGiOSGi

RuntimeRuntime JFaceJFace

SWTSWT

UIUI

Eclipse RCP

AntAnt

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 186

Goal 1: Minimize Infrastructure, Maximize Reuse
Characteristics of Eclipse RCP Application

Desktop Application: A Thick Client, not a Web browser
application
Runs on multiple platforms using native widgets
– Looks like a Windows App on Windows, looks like a Linux GTK app on

Linux, etc.

Rich UI with consistent metaphor
– Operates like modern applications with which users are familiar
– Tight integration with desktop OS
– Supports “drag and drop,” printing, etc.

Easy deployment
– All platforms can be built simultaneously
– Installation usually no more than copying a folder

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 187

Goal 1: Minimize Infrastructure, Maximize Reuse
Eclipse Technologies Used in CAVE

OSGi and Runtime: Provides plug-in model
UI
– SWT (Standard Widget Toolkit)

Platform-independent native widget toolkit
– JFace (Framework providing higher-level UI abstractions)

Menu bar, tool bar, content area, status line, viewers, actions, …
– Workbench, text, forms, GEF available
Help and User Assistance Mechanisms
– Help (html/xml based, context sensitive, search), Intro, Cheat Sheets
Deployment (Update Manager)
– APIs to programmatically update
Runtime Extension / Extension Point Model
– plugin.xml

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 188

BREAK

6/22/07 Page 189

Goal 2: Performance

Extremely Important: Performance-driven systems in place
today. Replacement technologies should also be
performance driven
CAVE Performance Approach:
– Fully harness the power of current- and future-generation graphics

cards using OpenGL. (Today's graphics cards are several orders of
magnitude faster than CPU at many operations.)

– Use advanced caching and data decimation techniques to make
rendering of large data usable

– Make the application as multi-threaded as possible so that the user is
not actively blocked while waiting for tasks to complete

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 190

Goal 2: Performance
Performance Using Raster Data

Quad-Tree Tiling implemented in HDF5 for Large Raster Data
– Raster data “pre-staged” into tiled levels.

Coarsest: Level 0
Least Coarse: level n
Each level twice the resolution of the previous level
Tiles can be any size (although experience shows that 256 x 256 tends to yield good
performance)

– Tiles automatically brought in as needed
Tiles only brought in at the zoom level at which they are applicable
Tiles only brought in when they are over a spatial area currently being viewed

– Tiles retained in memory until resource no longer needed, or space allocated
for tile cache is exhausted

Tiles evicted using a “Least Recently Used (LRU)” algorithm
Two levels of storage: Graphics Card and Memory

– Demo: Tile Loading and Eviction
– Demo: Tile Format on File-system

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 191

Goal 2: Performance
Performance in Vector and Plot Data

Making Vector Rendering Fast
– Use OpenGL concepts for high-speed vector drawing
– Use automatic vector decimation and other algorithms to reduce level of detail

automatically
– Allows for rendering vector data an order of magnitude larger than many

systems
– Demo: Vector Decimation

Performance of Plot Data
– Generate plot data asynchronously, requesting as the user zooms in, rendering

the individual plot offline, and bringing it into the display as it is available
– Demo: Plot Rendering

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 192

Goal 2: Performance
Performance of UI – Eclipse Jobs Enable Multiprocessing

<<Interface>>
Job

+run()

JMSManagerJob

+run()
+getMessage()

SubscriptionMangerJob

+run()
+registerResource()

TextureLoader

+run()
+requestLoad()

PrintServerAction

+run()
MouseInspectAdapter

+run()
+handleDoubleClick()
+handleMouseMove()
+handleMouseHover()

Tiler

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 193

Goal 3: Extendability
Allow CAVE to be extended easily by outside users
As much as possible, allow users to extend by writing their
own plug-ins − not by modifying framework
– Accomplished by using Eclipse Extension Points

Example: Defining a new Data Type with a registered file
extension (e.g., “tif”) for TIFF files
– User creates a new plug-in that defines a resource, and adds a plug-in

descriptor that registers the “.tif” file extension to their resource
– No modification to core code

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 194

BREAK

6/22/07 Page 195

CAVE Core Data Structure Concepts
Examine a Few of CAVE's Core Data Structures
Resources, Capabilities, and Map Descriptors
– Resources: Describe a “Layer” on the Map
– Capabilities: Interfaces implemented by Resources that provide a

capability
Example: IColorableResource is implemented for resources that can have
its color changed

– Map Descriptors
Contain a set of Resources and properties about the display

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 196

CAVE Resource Structure – ADE 0.1
Similar in Concept to D2D Depictable

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 197

CAVE Resource Capabilities

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 198

CAVE Resource Capabilities
Many (not all) capabilities are exposed to the user through
the contextual menu of the legend automatically – if the
Resource implements the interface

Example:

IColorableResource

IOutlineResource

IInspectableResource

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 199

Map Descriptor

The legend is a visual representation
of the map descriptor.

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 200

Exercise: Hands-On Rendering CAVE
Practical Exercise:
– Launching CAVE From Source Baseline
– Imaging Resources in CAVE

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 201

Launching CAVE From the Baseline

1. From inside Eclipse, locate the “com.raytheon.viz” project
2. Expand the project (click the triangle)
3. Double click on viz.product

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 202

Launching CAVE From the Baseline (Cont’d)
4. After the description

page loads, click on
the “Launch the
Product” blue
hyperlink.

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 203

Imaging Resources in CAVE

Before modifying code, we will learn how to open up and
manipulate a few resources in CAVE.

Demo/Exercise: CAVE GeoTIFF Demo
1. Open CAVE
2. File->Open GeoTIFF
3. Open “test.tif”
4. Right click on Legend and experiment with the capabilities: Brightness

(inside Imaging), Contrast (inside Imaging), and Visibility.

AWP.TRG.SWCTR/TO6.ADE/CAVE.06 Module 6: CAVE-Underlying Framework and Rendering

6/22/07 Page 204

LUNCH

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 7: CAVE-User Interface

June 22, 2007

6/22/07 Page 206

Objectives
CAVE baseline orientation
Add functionality by modifying plugin.xml
Add a new menu item and custom resource

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 207

Baseline Orientation
50 plug-ins in present CAVE environment
– Each with its own project in Eclipse
– Each built independently (although some plug-ins depend on others)

Some important CAVE plug-ins:
– Core plug-in: Provides rendering and infrastructure
– User interface plug-in: Provides core user interface capability
– Drawing & collaboration CAVE plug-in: Provides drawing and

collaboration support
– Several Open Source Java projects that have been repackaged as

plug-ins (org.jibx, org.geotools, etc.)

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 208

Important Capability Plug-in Packages

Plug-In Description
com.raytheon.viz.geotiff Support for the GeoTIFF geospatial imagery standard
com.raytheon.viz.shapefile Support for the Shapefile geospatial vector standard

com.raytheon.viz.pointdata Support for pointdata plotting
com.raytheon.viz.volumebrowser Support for the volume browser UI
com.raytheon.viz.grid Gridded data Rendering
com.raytheon.viz.radar Radar Rendering

com.raytheon.viz.satellite Satellite Rendering

com.raytheon.viz.ui.tools* Provides map interactions

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 209

Open Source Repackaged Plug-Ins

Plug-In Description
ncsa.hdf5 Provides HDF5 Capabilities
net.sf.ehcache LRU Caching support
org.apache.activemq JMS messaging support
org.apache.batik – SVG rendering
org.apache.commons* various Apache utilities
javax.units Unit Conversions
javax.vecmath Vector Math
javax.media.opengl OpenGL Support
org.geotools Geotools Geospatial Library
org.jivesoftware.smack XMPP Client for Collaboration
ncsa.hdf5 – Provides HDF5 Capabilities

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 210

Eclipse Plug-In XML
An example of plugin.xml (from core):

<extension
point="com.raytheon.viz.core.resource">

<resource
class="com.raytheon.viz.core.rsc.shp.ShapefileResource"

factoryClass="com.raytheon.viz.core.rsc.shp.ShapefileFactoryAdapter"
name="ShapefileResource">

<fileType
fileExtension="shp"
name="Shapefile"/>

</resource>
</extension>

This extension registers the Shapefile type to the
ShapefileResource (and the .shp file extension).

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 211

Eclipse Plug-In XML (cont’d)
Another example from Drawing's plugin.xml:

<action
class="com.raytheon.viz.drawing.WeatherSymbolTool"
icon="icons/thunderstorm.gif"
id="com.raytheon.viz.drawing.WeatherSymbolTool:17"
label="Thunderstorm"
state="false"
style="radio"
toolbarPath="drawing/g1"
tooltip="Thunderstorm"/>

This code adds the Weather Symbol tool to the toolbar
as the Thunderstorm tool. Note the “:17” at the end.
This corresponds to the 17.svg in basemaps.

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 212

BREAK

6/22/07 Page 213

Exercise: Plug-In XML

Objective: Add an entry to plug-in xml to add another symbol
1. Modify plugin.xml by adding another <action> block (copy the

thunderstorm block).
2. Point to testSymbol.svg and testSymbol.gif instead of 17.svg and

17.gif.
3. Give it a meaningful label and tooltip.

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 214

Exercise: Creating a Custom Imaging
Resource

Based on some of the capabilities we've experimented with in
CAVE, we'll add a new item to the “Add Layer” menu
containing our GeoTIFF resource, with custom brightness and
contrast settings.
1. Save a bundle using the “Save Bundle” item in the file menu.
2. Open the bundle XML using your favorite text editor
3. Clear the screen
4. Load the modified bundle
5. Verify the bundle matches what you expect

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 215

Exercise: Creating a Custom Imaging
Resource (Cont’d)
6. Once you have a bundle that you like:

– Copy the bundle file to cave/etc/staticMenu/Demos.
– Restart CAVE. The menuitem should show up in the Add Layer

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 216

References: Eclipse
Eclipse RCP home page

http://eclipse.org/rcp
http://eclipse.org/community/rcp.html
News://news.eclipse.org/eclipse.platform.rcp

Books on Eclipse
Eclipse Rich Client Platform by Jeff McAffer
SWT: The Standard Widget Toolkit, Vol. 1 by Northover

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

news://news.eclipse.org/eclipse.platform.rcp

6/22/07 Page 217

BREAK

6/22/07 Page 218

Additional Information
Books
– Patterns of Enterprise Application Architecture: Fowler
– Enterprise Integration: Patterns Hohpe
– Lucene in Action: Gospodnetic
– Hibernate in Action: Bauer
– Enterprise Service Bus: Chappell {Sonic ESB slant}
– SVG for Web Designers: Jason…
– SVG Essentials: Eisenberg
– Spring in Action: Walls
– Lighter, Faster, Java by Spring inventor
– Eclipse (extending and writing plug-ins …)
– Xdoclet in Action: Walls
– ANT – developers handbook
– Junit in Action: Massol
– Java 2D Graphics: Knudsen

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 219

Additional Information (cont’d)
Links
– Mule ESB + SPRING: http://mule.codehaus.org/
– Subversion CM: http://subversion.tigris.org
– ECLIPSE IDE framework & plug-ins: http://www.eclipse.org
– ActiveMQ JMS broker: http://www.activemq.org
– PostgreSQL RDBMS: http://www.postgresql.org
– JBossCache: http://www.jboss.org/products/jbosscache
– RHINO JS scripting: http://www.mozilla.org/rhino
– MINA: http://directory.apache.org/subprojects/network/index.html
– Batik SVG tools: http://xml.apache.org/batik
– Hibernate relational to object mapping: http://www.hibernate.org

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 220

Additional Information (cont’d)
Wx-related projects
– Unidata NetCDF
– VisAD
– IDV
– OpenGIS/GeoTools

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

6/22/07 Page 221

Contact Information

402.293.2934Scott_W_Nicholson@raytheon.comScott Nicholson

NWS POC

402.293.2940Bryan_J_Rockwood@raytheon.comBryan Rockwood

NWS POC

NWS POC

402.293.2916Mark_W_Fegan@raytheon.comMark Fegan

402.293.2944Gregory_Armendariz@raytheon.comGreg Armendariz

402.293.2948Christopher_N_Hammack@raytheon.comChris Hammack

402.293.2941Frank_P_Griffith@raytheon.comFrank Griffith

Phone NumberE-MailName

AWP.TRG.SWCTR/TO6.ADE/CAVE.07 Module 7: CAVE-User Interface

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 8: CAVE Visualization Plug-Ins

June 22, 2007

6/22/07 Page 223

Prerequisites/Objectives
Prerequisites
– Familiarity with CAVE baseline (TO4 Training)
– Familiarity with Java and Eclipse
– Exploration of the CAVE source code baseline
– ADE 1.0 installed

Objectives
– Understand the mechanisms required to extend CAVE
– Write a new plug-in to extend CAVE functionality

Estimated Time: 2 hours

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 224

Introduction to Extending CAVE

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 225

CAVE Extension Mechanisms
Mechanisms for extending CAVE
– New Resource

Provides the ability to create a new renderable layer or data type
– New Toolbar item

Facilitates launching an action or activating a modal tool
– New Menu item

Facilitates launching an action
– New Editor

Provides a mechanism for creating custom interactions in the main pane

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 226

Extension Mechanism: New Resource
A new resource that provides
– The ability to visualize a new datatype
– The ability to draw to screen (see AcetateLayer)

Drawing resources
Visualizations for interactions

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 227

Resource Extension Example: WarnGen
WarnGen
– Actually contains two of our extension types

A new layer and
An action that is attached to a toolbar button

– Layer provides a way to render the manipulated warning/watch on the
map:

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 228

Extension Mechanism: Toolbar Item
Toolbar item
– Extends AbstractTool
– Allows any sort of action to run

Mouse interaction
► By enabling a mouse handler

Example: PanTool
Pop-up window
► By creating a Dialog
► Example: Collaboration Login

Floating Palette
► By creating a Modeless dialog
► Example: WarnGen

Custom code
– Possible to run as a modal (state-based) or non-modal

Modal: Pan Tool . . . Non-Modal: Loop Preferences Dialog
To run modal, toolbar item should be set as style “toggle” and extend abstract class
com.raytheon.viz.ui.tool.AbstractModalTool

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 229

Toolbar Extension Example: WarnGen
WarnGen toolbar action
– Complicated
– Actually provides multiple types of

interactions, e.g.:
It enables a mouse handler that allows
the user to draw and manipulate
warnings on the map. The handler
interacts with the warning layer, which
actually draws the warning
It displays a pop-up window that displays
the warning parameters.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 230

Extension Mechanism: Menu Items
Nearly identical to toolbar
– Example: Open Shapefile

Opens a dialog box (actually a Wizard)

Note: In existing CAVE baseline, menus are contributed through
Java Code, not through Eclipse extensions. This will change
during future TOs to allow more flexibility.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 231

Extension Mechanism: New Editor
Used to display radically different kind of data
(non map-based)

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 232

BREAK

6/22/07 Page 233

Exercise: Extending CAVE

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 234

Creating a New Plug-in
In this example, we will create a plug-in that extends CAVE in

the two most common ways (a toolbar action and a
resource).
First, we will create a simple renderable resource that
displays a rectangle on the screen over a predefined area.
Then, we will first create an example toolbar action that adds
the new layer to the map.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 235

Getting Started
Creating new project
Setting up environment options
Adding your plug-in to the build distribution

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 236

Creating a New Project in Eclipse
1. From the File menu, choose New->Project.

2. Choose “Plug-in Project.”

3. Click “Next >.”

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 237

Creating a New Project in Eclipse (cont’d)
4. Set Project name to: gov.noaa.cave_training.

5. Click “Next>.”

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 238

Creating a New Project in Eclipse (cont’d)
6. Click “Finish.”

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 239

Setting up the Project Environment
1. From the main view in Eclipse, choose the recently created

project. Expand it, and the META-INF directory.
2. Double click on the MANIFEST.MF file. Choose the

“Dependencies” tab. The following screen appears:

3. Add
– com.raytheon.viz.core
– com.raytheon.viz.libs
– com.raytheon.viz.ui

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 240

Adding to the Project Build
Now, add the new plug-in to the CAVE product so that is

included in the build.
1. Inside of the com.raytheon.viz plugin, find “viz.product” and

double click on it. The following screen appears:

2. Choose “Configuration”

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 241

Adding to the Project Build (cont’d)
1. Click “Add.”

2. Add the
gov.noaa.cave_training
plug-in.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 242

Creating a New Resource
1. Create a new class:

– gov.noaa.cave_training.MyResource.
– From inside the gov.noaa.cave_training project, expand the “src”

grouping and select the gov.noaa.cave_training package.
– Right click on the package and choose New->Class.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 243

Creating a New Resource (cont’d)
1. Fill out the class template as shown in this example.

2. Click Finish.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 244

Creating a New Resource (cont’d)
Use Eclipse as an aid in filling out the method headers:
– We only need to implement a few select methods:

getName (determines the name on the legend):

public String getName() {
return "My Resource";

}

isApplicable (hint that determines if rsc should be drawn):

public boolean isApplicable(PixelExtent extent) {

return true;
}

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 245

Creating a New Resource (cont’d)
paint(): (using methods in the IGraphicsTarget passed in as an argument to
the paint method, draw to the screen):

public void paint(IGraphicsTarget target, PixelExtent extent,
double zoomLevel, float alpha) throws VizException {

target.drawLine(0, 0, 1000, 1000, new RGB(255,0,0), 1.0f);
}

– In this example our resource simply draws a line from screen
coordinate (0,0) to screen coordinate (1000, 1000) using the color red,
with a 1 point line width.

– In real resources, the IMapDescriptor is used to translate map/resource
coordinates into screen coordinates.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 246

Creating a New Resource (cont’d)
We’ve now created a resource, but this type will not be
utilized until an action is created to instantiate it.
– There is no hook for CAVE to ever create our resource.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 247

Add Toolbar Item Code
1. Create another new class:

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 248

Add Toolbar Item Code (cont’d)
2. Fill out the method runTool:

protected void runTool() {

try {
MyResource myResource = new MyResource();

AbstractEditor editor = ((AbstractEditor) VizApp.getCurrentEditor());

editor.getDescriptor().add(myResource);

editor.refresh();
} catch (WrongProjectionException e) {

e.printStackTrace();
}

}

Note: This code instantiates our resource, adds it to the list of map
resources, and refreshes the screen.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 249

Adding a Toolbar Action
We have our action class, but it will never be called unless

Eclipse is made aware of it.
We will notify Eclipse to expose our Action in the form of a
toolbar item
We do this by adding XML to our plugin.xml in our plug-in

1. Double click on MANIFEST.MF in our project.

2. Choose the Extensions tab.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 250

Adding a Toolbar Action (cont’d)
3. Create a new extension that extends

“org.eclipse.ui.editorActions” by clicking on Add.
4. It should activate against the editor

“com.raytheon.viz.ui.map.GLMapEditor.” (The code we
wrote was designed to interact with it.)

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 251

Adding a Toolbar Action (cont’d)
5. Add the action by right

clicking on the editorAction
and choosing New->action.

6. Fill in: name, class.
7. Set toolbarPath to

“tools/g3.” (Note: This is a
grouping placeholder. Tools
specifies the main toolbar,
g3 specifies the third
grouping (from left to right).

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 252

Run Our Example
1. From the viz base plugin, find viz.product.
2. Choose “Launch the product” from the Overview tab.

We should now have an action on the toolbar that
we can click.

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 253

Run Our Example (cont’d)
Our toolbar
button

Action when
button is clicked

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 254

Wrap-Up

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 255

Summary
Covered the basics on how to create a simple resource and
action to extend CAVE
Learned that adding menu items is extremely similar to
adding a toolbar
Extending new Editors for certain types of data is possible;
nevertheless, developers are encouraged to use the built-in
editors as much as possible

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

6/22/07 Page 256

Resources
On the ADE 1.0 DVD
– Current code available for examination in the CAVE baseline
– JavaDoc documentation available

AWP.TRG.SWCTR/TO6.ADE/CAVE.08 Module 8: CAVE Visualization Plug-Ins

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 9: Installation/Deployment

June 22, 2007

6/22/07 Page 258

Prerequisites/Objectives
Prerequisites
– Root access. Only necessary if installing to a directory other than the

user’s home directory
– VMWare Player installed on target machine. Only necessary if the

VMWare image will be used, instead of installing EDEX.

Objectives
– Install the EDEX Services and CAVE Application to a Supported

Platform

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 259

EDEX/Cave Installation
CAVE application and EDEX services installed using two
separate installers
– Each installer can install all files to the user’s home directory.

Installation can occur in any directory if root access is available to the
installer.

– EDEX can be run as a VMWare image. This image is a set of files and
is available in the distribution. This option is available for use on
Windows; CAVE can interact with a running VMWare instance.

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 260

EDEX Installation (Linux)
EDEX installer available for use on RHEL 4.2
– On the start screen, select next to proceed

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 261

EDEX Installation (Linux)
– Select Next on the information screen

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 262

EDEX Installation (Linux)
– Accept the license agreement and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 263

EDEX Installation (Linux)
– Enter the installation path (or browse to it) and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 264

EDEX Installation (Linux)
– Select which components to install for the ADE
– Only the EDEX Server is required. Select Next to continue

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 265

EDEX Installation (Linux)
– Set the address of the PostgreSQL install, the port number to listen on,

the path to store the PostgreSQL tablespaces and user/group
information for the non-privileged user

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 266

EDEX Installation (Linux)
– Enter the directory to store the HDF5 data and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 267

EDEX Installation (Linux)
– Select the shortcuts to install and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 268

EDEX Installation (Linux)
Installation will begin, and its progress will be displayed
– When complete, select the Next button

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 269

EDEX Installation (Linux)
PostgreSQL installation will begin
– When complete, select the Next button

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 270

EDEX Installation (Linux)
Installation is complete
– Select Done to exit the installer

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 271

EDEX Installation (VMWare Player)
EDEX VMWare image requires use of VMWare Player (1.0.3)
– Locate the VMWare image on the distribution
– Once located, start the VMWare player and open the file

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 272

EDEX Installation (VMWare Player)
VMWare Player will run the image
EDEX Server will be available for use from the CAVE
application

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 273

CAVE Installation
CAVE installer available for use on RHEL 4.2 and
Windows XP
– On the start screen, select Next to proceed

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 274

CAVE Installation
– Select Next on the information screen

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 275

CAVE Installation
– Accept the license agreement and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 276

CAVE Installation
– Enter the installation path (or browse to it) and select Next

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 277

CAVE Installation
CAVE is a required component
– Select Next to continue

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 278

CAVE Installation
– Specify the address of the EDEX server and the location of the HDF5

files
– Select Next to continue

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

6/22/07 Page 279

CAVE Installation
Installation is complete
– Select Done to exit the installer

AWP.TRG.SWCTR/TO6.ADE/CAVE-09.00 ADE-CAVE Module 9: Installation/Deployment

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 10: CAVE Menu Creation

June 22, 2007

6/22/07 Page 281

Prerequisites/Objectives
Prerequisites
– Familiarity with CAVE baseline (TO5 Briefing)
– Familiarity with Java and Eclipse
– Exploration of the CAVE source code baseline
– ADE 1.0 installed

Objectives
– Describe the changes in menu architecture in TO6
– Provide an example of creating a new menu in CAVE

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 282

Introduction to CAVE Menus

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 283

CAVE Menus
Previous versions of CAVE defined menus in Java using
Eclipse 3.2
– Not flexible enough, not dynamic enough

Eclipse 3.3: Far more flexible and dynamic menu capability
– Although currently in a beta state, the benefits of 3.3 architecture are

dramatic. Therefore, we chose to develop TO6 baseline against a pre-
release version of 3.3

– New approach has flexible ways of defining and placing menus,
dynamically decorating menus, and controlling visibility aspects

– ADE 1.0 version of CAVE built on the Eclipse 3.3m7 release

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 284

CAVE Menus
In CAVE, we primarily leverage the existing Eclipse 3.3 menu
capability
– Powerful capability; not many extensions needed

Example of menu extension:
<extension

point="org.eclipse.ui.menus">
<menuContribution

locationURI="menu:file?after=afterNewGroup">
<command

commandId="com.raytheon.viz.shapefile.shapefileImport"
label="Import Shapefile..."
style="push">

</command>
</menuContribution>

</extension>

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 285

CAVE Menus
Important points
– dataURI. Provides capability for more precise placement of menus.

Optional parameters “before” and “after” allow menu placement relative
to other menus, menu items, and arbitrary group markers.

– Commands. Menu items tied to commands rather than concrete code,
which allows for reuse of menu items in different contexts. Also
decouples execution logic from menu presentation.

– Command Parameters. Optional parameters to commands allow
menu items to pass unique parameters to the command handler logic.
Allows a single menu handler to service multiple menu items with
different results.

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 286

CAVE Menus
In addition to menus, a developer must define “commands”
and “handlers”
– Commands. Abstract concept of an action (no implementation)
– Handlers. Implementation of an action

Example:
<extension

point="org.eclipse.ui.commands">
<command

id="com.raytheon.viz.shapefile.shapefileImport"
name="Shapefile Import">

</command>
</extension>

<extension
point="org.eclipse.ui.handlers">

<handler
class="com.raytheon.viz.shapefile.action.ShapefileImportAction"
commandId="com.raytheon.viz.shapefile.shapefileImport">

</handler>
</extension>

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 287

CAVE Menus
Handler interface example:
public class ShapefileImportAction extends AbstractHandler {

@Override
public Object execute(ExecutionEvent arg0) throws ExecutionException {

ShapefileWizard wizard = new ShapefileWizard();
WizardDialog dialog = new WizardDialog(VizApp.getCurrentEditor()

.getSite().getShell(), wizard);
dialog.create();
dialog.open();
return null;

}

}

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 288

Exercise: Creating a New Menu Item

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 289

Creating a New Menu Item
In this example, we define a new CAVE plug-in that defines a
menu in the new structure. We will:
– First: Create an action class that defines a specific action
– Second: Create the command and handler XML to tie into the action
– Third: Create the menu itself in XML

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 290

Getting Started

Create plugin “gov.noaa.menu_example”

Click “Next”

Click “Finish”

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 291

Getting Started
To allow the new plug-in to
participate in the plug-in
environment, add the newly
created plug-in to the
viz.product

In com.raytheon.viz, open
viz.product, and choose the
Configuration Tab

Click “Add..”

Add the newly created plug-in, and
save the configuration

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 292

Creating the Action Class
Create DemoActionHandler

Extend AbstractHandler

Generate comments

Finish

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 293

Creating the Action Class

public class DemoActionHandler extends AbstractHandler {

/* (non-Javadoc)
* @see
org.eclipse.core.commands.AbstractHandler#execute(org.eclipse.core.comma
nds.ExecutionEvent)
*/

@Override
public Object execute(ExecutionEvent arg0) throws ExecutionException {

Shell shell = Display.getCurrent().getActiveShell();

MessageDialog.openInformation(shell, "Hello", "This was triggered by
"

+ arg0.toString());
return null;

}

}

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 294

Building the Command XML

Using the Eclipse plug-in
manifest editor:

Create org.eclipse.ui.
command

Create “Do Event”

<extension
point="org.eclipse.ui.commands">

<command
id="gov.noaa.menu_example.command1"
name="Do Event">

</command>
</extension>

Builds the XML:

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 295

Creating the Handler XML
Create
org.eclipse.ui.handlers

Set commandId to match
command created
previously

Point class to
DemoActionHandler class

<extension
point="org.eclipse.ui.handlers">

<handler
class="gov.noaa.menu_example.DemoActionHandler"
commandId="gov.noaa.menu_example.command1">

</handler>
</extension>

Builds the XML:

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 296

Creating the Handler XML
Create org.eclipse.ui.menus

Create menuContribution:
menu:org.eclipse.ui.main.menu?after=File

Create command
– Set Label “Hello World”
– Match commandId to previously

created command

Builds the XML:
<extension point="org.eclipse.ui.menus">

<menuContribution
locationURI="menu:org.eclipse.ui.main.menu?after=file">

<command commandId="gov.noaa.menu_example.command1"
label="Hello World">

</command>
</menuContribution>

</extension>
AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 297

Wrap-Up

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 298

Summary
Eclipse 3.3 provides support for menu placement and
dynamic menus that is far superior to previous Eclipse
incarnations
Best reference is the (forthcoming!) Eclipse 3.3
documentation

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

6/22/07 Page 299

Resources
On the ADE 1.0 DVD
– Current code available for examination in the CAVE baseline
– JavaDoc documentation available

AWP.TRG.SWCTR/TO6.ADE/CAVE-10.00 ADE-CAVE Module 10: CAVE Menu Creation

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract
DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the
Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to the restriction are contained in all sheets.

Advanced Weather
Interactive Processing

System II (AWIPS II)
AWIPS Development Environment (ADE)

and the
Common AWIPS Visualization

Environment
(CAVE)

Module 11: Localization

June 22, 2007

6/22/07 Page 301

Prerequisites/Objectives
Prerequisites
– Familiarity with CAVE baseline
– Familiarity with Java and Eclipse
– Exploration of the CAVE source code baseline
– ADE 1.0 installed

Objectives
– Introduce the localization concepts in ADE 1.0
– Describe the new localization process

Estimated Time: 1 hour

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 302

General Localization Approach
Localization procedure should occur at startup
– CAVE localization is simple: Go into preferences, choose a new

localization, and restart CAVE
– EDEX localization is simple: Choose a configuration during the

installation process
[Note: In the future, a technique to change server localization after installation
may be provided (likely of very limited value)]

Requires a different approach to data:
– Less subsetting required because CAVE can work with much larger

datasets
Example: No longer necessary to create a unique localized version of a
state’s shapefile

– Every site should work from the master set of data when possible.
Subsetting, if required, should occur on the first data access (in the
regular processing procedure)

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 303

Localization Overview
Three major localization components in ADE 1.0
– Localization service (present on the EDEX server)

Stores localization preferences for CAVE
– CAVE Localization Preferences

Contains all of the localization preferences for the workstation
– EDEX Localization Preferences

Stores primarily site-specific configuration options
Mostly related to system configuration, so “relocalizing” – although useful
from a testing perspective – is likely to be of limited use in a deployment
sense

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 304

Localization Overview

<configuration>
<textureCardPreference>128</textureCardPreference>
<textureMemoryPreference>384</textureMemoryPreference>
<framesPerSecondPreference>25</framesPerSecondPreference>
<tileBoundaries>false</tileBoundaries>
<connectionMethod>jms</connectionMethod>
<jmsServerAddress>tcp://localhost:61616</jmsServerAddress>
<dataDirectory>/awips/opt/data/hdf5</dataDirectory>
<fontMagnification>1.0</fontMagnification>

</configuration>
Base

Site

User

<configuration>
<siteName>KOAX</siteName>

<siteFullName>Omaha</siteFullName>
<siteType>WFO</siteType>

<dataDirectory>/oax-awips/opt/data/hdf5</dataDirectory>

</configuration>

Site:

<configuration>
<fontMagnification>1.25</fontMagnification>

</configuration>

User:

Base:

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 305

CAVE Localization Preferences
Eclipse already has a built-in concept of preferences.
So why change?
– Default Eclipse preferences have no concept of base, site, and user

localization – just a single level
– There is no concept of preference synchronization – changing an option

on one workstation doesn't will not change it on other workstations
– Finally . . . We are continuing to use Eclipse preferences; we are just

extending their existing capabilities
Instead of using the Eclipse preference store, preferences are now stored in
an easily accessible XML format

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 306

Localization in CAVE
Basic Concept
– Your currently logged-in Linux (or Windows) username determines your

user context
However, this could become a manual selection process if necessary

– The site choice could be predefined for an installation, but easily
changed in Preferences

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 307

Localization in CAVE
At start-up, CAVE will contact the localization service
Some potential synchronization items
– Preferences

Example: Site name, local grid windows
– Menus

Example: Site-specific data menus
– Data

Example: Colormaps, parameter mappings, etc.
– Future

Custom datatype plug-ins (custom code!)

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 308

Localization in EDEX
Because localization primarily occurs at the workstation (to
facilitate the possibility of servicing multiple locales with a
single server configuration), EDEX localization is primarily
system configuration-based

Configuration files are split into two parts
– Base: Contains the stock configuration values
– Site: Contains any values that the site chooses to override for its locale

Note: Site files may be empty, indicating that the default system configuration
should be used.

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 309

Localization in EDEX

Note that same filename appears
in “base” and “site” contexts

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 310

Summary
Localization provided through two simple, unified interfaces
– Configuration for the server
– Localization for the client, with server synchronization capability

Localization provides a multi-tiered configuration
– Base, Site for Server
– Base, Site, and User for Client

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

6/22/07 Page 311

Resources
On the ADE 1.0 DVD
– Current code available for examination in the CAVE base-line
– JavaDoc documentation available

AWP.TRG.SWCTR/TO6.ADE/CAVE-11.00 ADE-CAVE Module 11: Localization

	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Purpose of Course
	Training Prerequisites
	Course Objectives
	Course Objectives (cont’d)
	Course Objectives (cont’d)
	Course Objectives (cont’d)
	Course Objectives (cont’d)
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Introduction
	Architecture History Leading to SOA
	Core Decisions –�Use ESB and Container-Based Processing
	Core Decisions (cont’d)			
	System Concept: AWIPS Architecture �Environmental Intelligence Framework
	AWIPS Architecture Definitions
	AWIPS Architecture Concept –�Architecture Framework Implementation
	AWIPS ADE Open Source Projects –�Integrated Open Source Projects
	SOA Framework Concept �Extensible Architecture – Minimal Coupling
	Architecture Features – �Execution Container & Data
	Architecture Features – Geo Spatial�Spatial-Enabled PostgreSQL and GeoTools with JTS
	Architecture Features – Visualization
	ADE CAVE Visualization – Service Endpoint�Enables Gaming Style Data Interactions
	Architecture Features – �Languages, Interprocess Communication
	Conceptual Architecture: �Logical Layered Viewpoint
	AWIPS-II ADE High Level System Services �SOA Services Running in an ESB Container
	Service Descriptions
	ADE Implemented Design Patterns�Patterns Enable AWIPS “ilities”
	Software CM/Build/Deploy Pattern�Design Pattern
	Geo Spatial Pattern �Basic GIS Ingest, Indexing, Output, and Analysis
	Geo Spatial Pattern �Coordinate Reference System (CRS)
	AWIPS Data Models
	Data Model Introduction�Canonical XML SOA Interfaces Excluded
	Conceptual Data Model Design�I/O Formats Follows Existing Standards
	AWIPS Canonical XML – �Top Level Structure (End Point Independent)
	Data Access Layer API�Hibernate Leading Object To Relational Approach
	Hibernate XML Object/ Relational Mapping�Defined in SOA Plug In: Enables Adaptability
	ADE Data Access Pattern�Layered API Leveraging Spring’s Hibernate Support
	SOA Plug-In Defines a Meta Data Table Set�Each Plug-In Also Defines a HDF5 set
	Plug-In Creates New MetaData in RDBMS�Uses PostgreSQL Table Inheritance and Rules
	Meta Data Demo�Using CAVE’s Volume Browser
	General DataURI Concept – �Key for System Adaptability to New Data Types
	Meta Data Model Drives DataURI�Auto-Generated DataURI Couples HDF5 to Meta Data
	Data Persistence Using HDF5�HDF5 Files In Time-Ordered Bins Like Meta Data
	ADE Data Persistence Using HDF5�Application Code Interfaces Through API
	uEngine Using the Data Access Layer�Single API Enables uEngine to Access All Data
	Purging Data: Self-Maintaining�Drops Meta Data Tables & HDF5 Bins Periodically
	System Flow Diagrams
	Ingest Flow �Ingest at a Clustered End Point
	Product Request Flow �Cave Requests Data for Display as a GIS Layer
	Notification Flow – �Ingest Flow Triggering Notification
	Subscription Flow – �CAVE Requests a Subscription
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	AWIPS Development Environment (ADE) –�An End-to-End Technical Reference Architecture
	ADE Delivery – One DVD Posted to Site
	ADE Install Procedure
	Start-Up Server Side
	ADE Regression Tests – Start Tomcat
	ESB / Container Log File for Ingest
	Remote Debugging of ESB SOA Services�Example Stepping Through “ProductSrv”
	Server Side: Developer Build and Deploy
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	uEngine Overview
	Architecture
	Architecture: How it Works
	Tasks
	JavaScript Scripting
	JavaScript Scripting: Sample GriB to �Image Script
	JavaScript Scripting: Sample Query For METARS Script
	Client Applications
	Client Applications
	Summary
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Notes
	Objectives
	Prerequisites
	Topics
	Why a Plug-In Pattern?
	What Is a Plug-In in Java Terms?
	Easy Adaptability to New Data Types
	Plug-In Interface to SOA Services
	High-Level Concept Diagram
	Java Files Involved in Plug-In Concept
	Data Type Plug-In Factory Concept
	Factory Concept
	AWIPS EDEX Data Flow & Plug-Ins
	Plug-In Relationship to Meta Data
	Plug-In Relationship to Data Persistence
	Plug-in Relationship to Data Indexing
	Plug-In Relationship to Product Server
	Plug-In Relationship to Notification
	AWIPS EDEX Project Organization
	AWIPS EDEX Project Organization
	AWIPS Plug-In Directory Structure
	AWIPS Plug-in Directory Structure Considerations
	AWIPS Plug-in Directory Structure Considerations
	AWIPS Plug-In Directory Structure
	AWIPS EDEX Build Files To Modify
	AWIP EDEX Plug-In Jar Structure
	Makeup of the Plug-In Architecture
	AWIPS EDEX Plug-In Factory
	Plug-In Architecture: �Data Record Classes
	Plug-In Architecture: �Data Access Layer Design
	Plug-In Architecture: �The Plugin Class
	Plug-In Architecture: �Plugin Class Design
	Plug-In Architecture: �Plugin Class Utilization
	Plug-In Architecture: �Java Interfaces
	Plug-In Architecture: �IRecordSeparator Functionality
	Plug-In Architecture: �IRecordSeparator Design
	Plug-In Architecture: �IRecordSeparator Utilization
	Plug-In Architecture: �IRecordSeparator Example
	Plug-In Architecture: �RecordSeparatorImpl
	Plug-In Architecture: �IMessageDecoder Functionality
	Plug-In Architecture: �IMessageDecoder Design
	Plug-In Architecture: �IMessageDecoder Utilization
	Plug-In Architecture: �IMessageDecoder Example
	Plug-In Architecture: �IMessageWriter Functionality
	Plug-In Architecture: �IMessageWriter Design
	Plug-In Architecture: �IMessageWriter Utilization
	Plug-In Architecture: �IMessageWriter Example
	Plug-In Architecture: �RecordWriterImpl
	Plug-In Architecture: �Data Record Functionality
	Plug-In Architecture: �Data Record Design
	Plug-In Architecture: �Data Record Utilization
	Plug-In Architecture: �Data Record Example
	Plug-In Architecture: �Required Configuration Files
	Plug-In Configuration: �plugin.xml
	Plug-In Configuration: �attributes.xml
	Plug-In Configuration: �binding.xml
	Plug-In Configuration: �table-name.db.xml
	Plug-In Configuration: �table-name.db.xml
	Plug-In Configuration: �plug-in-name.hbm.xml
	AWIPS Plug-In Creation Tool: �New With ADE 1.0
	Installation of ADE Plug-In Creation Tool
	Accessing ADE Plug-In Creation Tool
	Creating a Plug-In With the Tool
	Creating a Plug-In With the Tool (cont’d)
	Creating a Plug-In With the Tool (cont’d)
	Creating a Plug-In With the Tool
	Creating a Plug-In With the Tool (cont’d)
	Creating a Plug-In With the Tool
	Plug-In Architecture: �Adding the Ingest Endpoint
	Plug-In Architecture: �Adding the Ingest Endpoint
	Plug-In Architecture: �Adding the Ingest Endpoint
	Plug-In Architecture: �Adding a uEngine Task
	Summary
	Resources
	Hands-On Exercise: Data Type Plug-In
	Hands-On Exercises: Data Type Plug-In
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	SOA Service Design Pattern:�Wrap the Interface to the ESB/Container
	ESB Message Event Handling to Service
	SOA’s Service Process Method
	Wiring the SOA Service Into the Container
	Mule ESB/ Container Startup Reads Wiring
	JMX Console Connects to Mule ESB Runtime�(JMX Is a T05 Capability, But T04 Has Some Basics)
	Exercise: Monitoring an SOA Service�SBNsatIngestSRV Monitoring
	Extra Credit: Debug SOA Service
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	Motivation and Goals of CAVE
	CAVE: Vision
	CAVE Top-Level Concept
	Goal 1: Minimize Infrastructure, Maximize Reuse
	Goal 1: Minimize Infrastructure, Maximize Reuse �Architectural Diagram
	Goal 1: Minimize Infrastructure, Maximize Reuse �Eclipse RCP
	Goal 1: Minimize Infrastructure, Maximize Reuse �Characteristics of Eclipse RCP Application
	Goal 1: Minimize Infrastructure, Maximize Reuse Eclipse Technologies Used in CAVE
	Goal 2: Performance
	Goal 2: Performance �Performance Using Raster Data
	Goal 2: Performance �Performance in Vector and Plot Data
	Goal 2: Performance �Performance of UI – Eclipse Jobs Enable Multiprocessing
	Goal 3: Extendability
	CAVE Core Data Structure Concepts
	CAVE Resource Structure – ADE 0.1�Similar in Concept to D2D Depictable
	CAVE Resource Capabilities
	CAVE Resource Capabilities
	Map Descriptor
	Exercise: Hands-On Rendering CAVE
	Launching CAVE From the Baseline
	Launching CAVE From the Baseline (Cont’d)
	Imaging Resources in CAVE
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Objectives
	Baseline Orientation
	Important Capability Plug-in Packages
	Open Source Repackaged Plug-Ins
	Eclipse Plug-In XML
	Eclipse Plug-In XML (cont’d)
	Exercise: Plug-In XML
	Exercise: Creating a Custom Imaging Resource
	Exercise: Creating a Custom Imaging Resource (Cont’d)
	References: Eclipse
	Additional Information
	Additional Information (cont’d)
	Additional Information (cont’d)
	Contact Information
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	CAVE Extension Mechanisms
	Extension Mechanism: New Resource
	Resource Extension Example: WarnGen
	Extension Mechanism: Toolbar Item
	Toolbar Extension Example: WarnGen
	Extension Mechanism: Menu Items
	Extension Mechanism: New Editor
	Creating a New Plug-in
	Getting Started
	Creating a New Project in Eclipse
	Creating a New Project in Eclipse (cont’d)
	Creating a New Project in Eclipse (cont’d)
	Setting up the Project Environment
	Adding to the Project Build
	Adding to the Project Build (cont’d)
	Creating a New Resource
	Creating a New Resource (cont’d)
	Creating a New Resource (cont’d)
	Creating a New Resource (cont’d)
	Creating a New Resource (cont’d)
	Add Toolbar Item Code
	Add Toolbar Item Code (cont’d)
	Adding a Toolbar Action
	Adding a Toolbar Action (cont’d)
	Adding a Toolbar Action (cont’d)
	Run Our Example
	Run Our Example (cont’d)
	Summary
	Resources
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	EDEX/Cave Installation
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (Linux)
	EDEX Installation (VMWare Player)
	EDEX Installation (VMWare Player)
	CAVE Installation
	CAVE Installation
	CAVE Installation
	CAVE Installation
	CAVE Installation
	CAVE Installation
	CAVE Installation
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	CAVE Menus
	CAVE Menus
	CAVE Menus
	CAVE Menus
	CAVE Menus
	Creating a New Menu Item
	Getting Started
	Getting Started
	Creating the Action Class
	Creating the Action Class
	Building the Command XML
	Creating the Handler XML
	Creating the Handler XML
	Summary
	Resources
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visuali
	Prerequisites/Objectives
	General Localization Approach
	Localization Overview
	Localization Overview
	CAVE Localization Preferences
	Localization in CAVE
	Localization in CAVE
	Localization in EDEX
	Localization in EDEX
	Summary
	Resources

