

Test Case Subscription Capability

for

Contract DG133W-05-CQ-1067

Advanced Weather Interactive Processing System (AWIPS)

Operations & Maintenance

AWP.TE.SWCTR/Baseline Subscription Capability
Prepared for:

U.S. Department of Commerce

NOAA/NWS Acquisition Management Division

SSMC2, Room 11220

1325 East-West Highway

Silver Spring, MD 20910
Prepared by:

Raytheon Company

STC Office

6825 Pine Street

Omaha, NE 68106

8 April 2009
Submitted By:

Test Engineer

Date

Approved By:

Program Manager

Date

Mission Assurance Quality

Date

Change History

	Revision
	Date
	Affected Pages
	Explanation of Change

	Draft
	21 Nov. 2008
	ALL
	Initial Draft

	1
	10 Jan. 2009
	ALL
	Result of NWS comments and PDT.

	2
	6 Feb. 2009
	iii, 4, 5
	Result of DT

	Draft
	8 Apr. 2009
	ALL
	Draft for TO11

Table of Contents

Page

11.0
Scope

22.0
APPLICABLE DOCUMENTS

22.1
Source Documents

22.2
Reference Documents

33.0
Test Case description

33.1
Assumptions, Constraints, and Preconditions

33.2
Recommended Hardware

33.3
Test Inputs

33.4
Test Outputs

44.0
TEST SCENARIO

75.0
requirements verification traceability matrix (RVTM)

1.0 Scope

See AWIPS II Software Test Plan.

2.0 APPLICABLE DOCUMENTS

2.1 Source Documents

· None.
2.2 Reference Documents

· AWIPS II Software Test Plan for the Advanced Weather Interactive Processing System Project, Contract #DG133W-05-CQ-1067, January 2009.
· The Silver Spring NWS AWIPS 1 test bed application.

3.0 Test Case description
This test case illustrates the AWIPS II subscription capability that replaces the AWIPS I database trigger capability; the test is accomplished via inspection of the file system and/or logs.
3.1 Assumptions, Constraints, and Preconditions

· TO11 software has been installed successfully.
· CAVE, EDEX and pgAdmin III* are running.
· Data has been ingested.

3.2 Recommended Hardware

See AWIPS II Software Test Plan.

3.3 Test Inputs

Section 4.0 contains the test procedures for this test case. Sections 2.2 – 2.9 of the AWIPS II Software Test Plan contain general test inputs applicable to all TO11 test cases.

3.4 Test Outputs

The results outlined in section 4.0 are met.

* Any acceptable database query tool/process can be used

4.0 TEST SCENARIO
	Step #
	Action
	Result
	Pass/Fail

	1.
	Launch a terminal window.
	Terminal window is at user prompt.
	

	2.
	ssh root@awips-xxx
	You are prompted for password.
	

	3.
	Enter password to log in.

cd /awips/fxa/bin
	You are at the awips-int1 # sign prompt in the directory with the command line interfaces scripts.
	

	4.
	Access the database tables by one of the following methods:

Open the PG Admin database tool. Connect to the testbed database and select the metadata database. Expand the database tree until the tables are displayed by selecting schema, subscription, and tables.
or

Open a terminal window and login to the database server.

ssh root@awips-db <database server>

cd /awips/bin

ls –al Verify ‘psql’ is listed.

psql –U awips –d metadata –p5432
Enter password for user awips.

This will open a window to query the metadata tables.

To quit the window, use \q and return key.
	A window to access the database tables is opened and the tables can be queried.
	

	5.
	Query the subscriptions table.
select * from subscription.subscriptions;
	The data displayed are the subscriptions stored in the database.
	

	Scenario 1: Create subscript for timer, product, and LDAD driven scripts.

	6.
	In the terminal window execute the following:

./subscription –o add –t timer –r python –p ”0 * * * * ?” < src/data/HelloWorld.py
	Identifies the subscription operation (add) the type of trigger (timer), the uEngine script runner (python), and the pattern (Quartz cron expression) of the trigger script execution.

You will see a status message something like “Database insert was successful.”
	

	7.
	In the terminal window execute the following:

./subscription –o add –t data –r python –p ”/obs/*/KOMA/*” < src/data/EchoTrigger.py
	Identifies the subscription operation (add), the type of trigger (data), the uEngine script runner (python), and the pattern (P5 regex that matches product data uris) of the trigger data to match.

You will see a status message something like “Database insert was successful.”
	

	8.
	In the terminal window execute the following:

./subscription –o add –t ldad –r ldad –p CCCNNNXXX –f tester.sh
	Identifies the subscription operation (add) the type of trigger (ldad), the uEngine script runner (ldad), the script to run (tester.sh), and the pattern (AFOS PIL) of the trigger data to match.

You will see a status message something like “Database insert was successful.”
	

	9.
	Query the subscriptions table to retrieve data added in the step above.
	The data displayed shows the subscriptions added to the database.
	

	Scenario 2: querying the database for lists of subscriptions

	10.
	In the terminal window execute the following:

./subscription –o read –t timer
	Requests a listing of all subscriptions having timer triggers. You should get at least one script at this time.
	

	11.
	In the terminal window execute the following:

./subscription –o read –t data
	Requests a listing of all subscriptions having data triggers. You should get at least one script at this time.
	

	12.
	In the terminal window execute the following:

./subscription –o read –t ldad
	Requests a listing of all subscriptions having ldad triggers. You should get at least one script at this time.
	

	13.
	In the terminal window execute the following:

./subscription –o read –r python
	Requests a listing of all subscriptions using the Python Micro Engine. You should get at least two scripts at this time.
	

	14.
	In the terminal window execute the following:

./subscription –o read –p CCCNNNXXX
	Requests a listing of all subscriptions having the specified trigger. You should get at least one script at this time.
	

	Scenario 3: Updating database entries

	15.
	In the terminal window execute the following:

./subscription -o read –t data
ID number: ______________
	Gets a list of data triggered subscriptions currently in the database. (There should be at least one.) Note the ID number for one of the subscriptions.
	

	16.
	In the terminal window execute the following:

./subscription –o update –i <index> –u active false
	Updates the subscription <index> changing the active flag to false. (Use the ID from step 15 in place of <index>)
	

	17.
	Query the subscriptions table to retrieve data modified in the steps above.
	The data displayed shows the subscriptions modified in the database.
	

	Scenario 4: Deleting a subscription from the subscription table.

	18.
	In the terminal window execute the following:

./subscription -o read –t data
ID number: ______________
	Gets a list of data triggered subscriptions currently in the database. (There should be at least one.) Not the ID number for one of the subscriptions.
	

	19.
	In the terminal window execute the following:

./subscription –o delete –i <index>

	Deletes the subscription having the specified index.(Use the ID from step 18 in place of <index>)
	

	20.
	Query the subscriptions table to retrieve data modified in the steps above.
	The data displayed shows the subscription deleted in the database.
	

	21.
	In the terminal window execute the following:

./subscription –o delete

Type ‘Y’ to confirm delete.
	Deletes all the subscriptions in the database.
	

	Scenario 5: Force an error condition.

	22.
	In the terminal window execute the following:

./subscription -I 1035 –u active true
	Creates an error and returns the error message:

Error:

ArgError: 'For subscription maintenance; must specify operation'
	

	23.
	Close the database window.
	The database window is closed.
	

	24.
	Exit to log out and close the terminal windows.
	The terminal windows are closed.
	

	End of Test

5.0 requirements verification traceability matrix (RVTM)

	Number
	Description
	Test Step(s)

	SYSR3124
	The AWIPS system shall implement command line Interfaces to the subscription script runner.
	ALL

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for any purpose other than to the extent provided in contract DG133W-05-CQ-1067. However, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the Government’s right to use information contained in this data if it is obtained from another source without restriction. The data subject to this restriction are contained in all sheets.
HARD COPY UNCONTROLLED

